节点文献

基于改进级联算法的不平衡数据集分类检测算法

The Classification and Detection Algorithm for Imbalanced Datasets Based on Improved Cascading Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吕文官薛峰

【Author】 LYU Wenguan;XUE Feng;Information Development Department,Anhui Industrial Economics Vocational and Technical College;School of Computer Science and Information, Hefei University of Technology;

【通讯作者】 薛峰;

【机构】 安徽工业经济职业技术学院信息发展处合肥工业大学计算机与信息学院

【摘要】 以提升不平衡数据集分类检测为研究目标,提出基于改进级联算法的不平衡数据集分类检测算法.首先,采用卡尔曼滤波法进行数据去噪预处理,利用小波阈值去噪算法二次消除噪声数据,并对去噪结果进行归一化预处理;利用DPC算法提取数据的局部密度特征,利用时间编码挖掘数据的时序性特征,采用Apriori算法的强关联规则提取数据集特征;利用模糊层次聚类算法对支持向量机进行优化,实现数据类型的划分;利用改进的级联算法联合布谷鸟算法实现不平衡数据集分类检测.实验结果表明本方法的分类协方差低于0.15,检测准确率高于95%,检测时间低于2.2 ms,有效提升了不平衡数据集分类检测效果.

【Abstract】 With the research goal of improving the classification and detection of imbalanced datasets, a classification and detection algorithm for imbalanced datasets based on an improved cascade algorithm is proposed. Firstly, the Kalman filtering method is used for data denoising preprocessing, and the wavelet threshold denoising algorithm is used to eliminate noisy data twice, and the denoising results are normalized for preprocessing; extracting local density features of data using DPC algorithm, mining temporal features of data using time encoding, and extracting dataset features using strong association rules of Apriori algorithm; using fuzzy hierarchical clustering algorithm to optimize support vector machines and achieve data type partitioning; utilizing an improved cascaded algorithm combined with the cuckoo algorithm to achieve imbalanced dataset classification detection. The experimental results show that the classification covariance of this method is less than 0.15, the detection accuracy is higher than 95%, and the detection time is less than 2.2 ms, effectively improving the classification and detection performance of imbalanced datasets.

【基金】 2020年度安徽省教育厅高校自然科学研究重点项目“基于移动手机端NFC及IC-UID卡控身份认证模式在多媒体教室中央控制系统中的应用研究”(KJ2020A1055)
  • 【文献出处】 保定学院学报 ,Journal of Baoding University , 编辑部邮箱 ,2024年02期
  • 【分类号】TP311.13;TP18
  • 【下载频次】16
节点文献中: 

本文链接的文献网络图示:

本文的引文网络