节点文献

基于改进PPO算法的双足机器人自适应行走控制

Adaptive walking control for bipedal robots based on enhanced PPO algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴万毅刘芳华郭文龙

【Author】 WU Wanyi;LIU Fanghua;GUO Wenlong;School of Mechanical Engineering, Jiangsu University of Science and Technology;

【通讯作者】 刘芳华;

【机构】 江苏科技大学机械工程学院

【摘要】 针对双足机器人在未知环境行走过程中步态不稳的问题,提出了一种基于近端策略优化(proximal policy optimization, PPO)的双足机器人控制方法.首先,构建动作网络和价值网络,引入长短时记忆(long short-term memory, LSTM),以缩小双足机器人与未知环境交互时的状态估计值与期望值之间的偏差;其次,在动作网络中引入注意力机制,自适应改变神经网络自主学习的权重系数,以提高学习效率,得到适应不同环境的稳定步态;最后,通过仿真实验验证所提算法的有效性.结果表明:改进后近端策略优化算法的收敛速度更快,学习效率更高,能够有效提高双足机器人自适应行走的稳定性.

【Abstract】 A control method for bipedal robots based on proximal policy optimization(PPO) is proposed to address the issue of unstable gait during walking in unknown environments. Firstly, the construct an action network and value network are constructed, and long short term memory(LSTM) is constructed to reduce the deviation between the estimated state and the expected value when the bipedal robot interacts with the unknown environment. Secondly, the attention mechanism is introduced into the action network to adaptively change the weight coefficients of the neural network for autonomous learning, in order to improve learning efficiency and obtain a stable adapted to different environments. Finally, the effectiveness of the proposed algorithm is verified by simulation experiments. The results show that the improved proximal strategy optimization algorithm has faster convergence speed, higher learning efficiency, and can effectively improve the stability of adaptive walking for bipedal robots.

【基金】 国家自然科学基金资助项目(62002141)
  • 【文献出处】 扬州大学学报(自然科学版) ,Journal of Yangzhou University(Natural Science Edition) , 编辑部邮箱 ,2023年06期
  • 【分类号】TP242;TP18
  • 【下载频次】121
节点文献中: 

本文链接的文献网络图示:

本文的引文网络