节点文献
四维不可压缩Navier-Stokes方程的能量守恒
Energy Conservation of the 4D Incompressible Navier-Stokes Equations
【摘要】 研究了四维不可压缩Navier-Stokes方程的能量守恒,当该方程的Leray-Hopf弱解(适当弱解)存在维数小于4的奇异集时,基于Wu在文章中关于四维不可压缩Navier-Stokes方程的部分正则性结果,得到了四维空间中L~q([0,T];L~p(R~4))条件,保证该方程能量守恒.
【Abstract】 The energy conservation of 4D incompressible Navier-Stokes equations was studied. In the case of a singular set with a dimension number less than 4 for the Leray-Hopf weak solution(suitable weak solution), the L~q([0,T];L~p(R~4)) condition in the 4D space was obtained based on Wu’s partial regularity results about the 4D incompressible Navier-Stokes equations, to ensure the energy conservation.
【关键词】 Navier-Stokes方程;
部分正则性;
能量守恒;
【Key words】 Navier-Stokes equation; partial regularity; energy conservation;
【Key words】 Navier-Stokes equation; partial regularity; energy conservation;
【基金】 国家自然科学基金项目(11901346;11871305)
- 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,2023年08期
- 【分类号】O175
- 【下载频次】8