节点文献

基于特征提取与选择的气体识别研究

Research on Gas Recognition Based on Feature Extraction and Selection

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈博王刚师春雪齐国臣曹仰杰田辉卫荣汉

【Author】 CHEN Bo;WANG Gang;SHI Chun-xue;QI Guo-chen;CAO Yang-jie;TIAN Hui;WEI Rong-han;School of Cyber Science and Engineering, Zhengzhou University;Hanwei Electronics Group Corporation;School of Mechanics and Safety Engineering, Zhengzhou University;Institute of Intelligent Sensing, Zhengzhou University;

【通讯作者】 田辉;卫荣汉;

【机构】 郑州大学网络空间安全学院汉威科技集团股份有限公司郑州大学力学与安全工程学院郑州大学智能传感研究院

【摘要】 在电子鼻系统中,特征提取和选择以及分类模型都是其性能改进的关键。针对从传感器阵列中提取单一特征时会忽略传感器特异性的问题,提出基于相关性分析来选择每一个传感器最优的特征提取方法,组成最优特征向量进行气体识别,实验表明:通过该方式提取的特征向量在分类模型中表现更好,在各模型的平均识别准确率提升了0.027,其中支持向量机和人工神经网络提升效果最明显,分别提升了0.031和0.054。并根据模型特性和实际需求,提出逻辑回归与支持向量机结合的二次分类模型,实验表明该模型能够进一步提高分类准确率,降低具体气体检测场景中辨别气体错误的风险。

【Abstract】 In the electronic nose system, both feature extraction and selection as well as classification models are the keys to its performance improvement.Aiming at the problem of ignoring the sensor specificity when extracting a single feature from the sensor array, this paper proposed to select the optimal feature extraction method for each sensor based on correlation analysis, and form the optimal feature vector for gas identification.The experiment results show the eigenvectors perform better in the classification model, and the average recognition accuracy of each model increases by 0.027,of which the support vector machine and artificial neural network have the most obvious improvement, with an increase of 0.031 and 0.054,respectively.According to the model characteristics and actual requirements, a secondary classification model combining logistic regression and support vector machine is proposed.Experiments show that the model can further improve the classification accuracy and reduce the risk of gas identification errors in specific gas detection scenarios.

【基金】 国家重点研发计划课题(2021YFB3200403);郑州市协同创新重大专项(20XTZX06013);河南省高等学校重点科研资助项目(20A460022);国家自然科学基金面上项目(52171193);中国博士后科学基金(2021M692926);河南省科技攻关项目(222102310647)
  • 【文献出处】 仪表技术与传感器 ,Instrument Technique and Sensor , 编辑部邮箱 ,2023年02期
  • 【分类号】TP212
  • 【下载频次】50
节点文献中: 

本文链接的文献网络图示:

本文的引文网络