节点文献

改进特征空间的红外弱小目标背景建模法

Infrared dim small target background modeling based on improved eigenspace mode

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 樊香所文良华徐兴贵徐智勇冉兵

【Author】 FAN Xiangsuo;WEN Lianghua;XU Xinggui;XU Zhiyong;RAN Bing;Division of Intelligence Manufacturing, Yibin University;Guangxi Earthmoving Machinery Collaborative Innovation Center,Guangxi University of Science and Technology;School of Information,Yunnan University of Finance and Economics;Institute of Optics and Electronics,Chinese Academy of Sciences;

【通讯作者】 徐兴贵;

【机构】 宜宾学院智能制造学部广西科技大学广西土方机械协同创新中心云南财经大学信息学院中国科学院光电技术研究所

【摘要】 为有效去除动态背景对弱小目标信号的干扰,提出改进特征空间的红外弱小目标背景建模法来抑制背景。先采用改进的各向异性滤波算法从空域角度进行滤波以约束图像各个组分的差异,紧接着取连续时间域上多帧滤波后的图像组成一个特征矩阵,借助于主成分分析法进行特征分解,最后将输入图像投影到特征空间上进行背景建模,同时为了适应动态变化的背景,在时域上以一定学习率来更新背景模型。实验结果表明,提出的算法比传统的算法取得更好的背景估计效果,结构相似性SSIM、对比度增益I和背景抑制因子BIF分别大于0.97、15.46和5.25。

【Abstract】 A background modeling method of infrared dim small target based on improved eigenspace is proposed in order to effectively remove the interference of dynamic background on dim small target signal. Firstly, an improved anisotropic filtering algorithm is employed to filter from the spatial perspective to constrain the differences of each component of the image. Then, a feature matrix is formed from the filtered images in the continuous time domain, and the Principal Component Analysis(PCA) is adopted to perform feature decomposition. Finally, the input image is projected onto the eigenspace for background modeling. As to adapt to the dynamic background, the background model is updated with a certain learning rate in temporal domain. Experimental results show that the proposed algorithm achieves better background estimation effect than the traditional algorithm. The structural similarity SSIM, contrast gain I and background suppression factor BIF are greater than 0.97, 15.46 and 5.25 respectively.

【基金】 国家自然科学基金资助项目(62001129;61975171);广西自然科学基金资助项目(2021GXNSFBA075029);广西科技基地和人才专项资助项目(2019AC20147)
  • 【文献出处】 太赫兹科学与电子信息学报 ,Journal of Terahertz Science and Electronic Information Technology , 编辑部邮箱 ,2023年09期
  • 【分类号】TP391.41
  • 【下载频次】2
节点文献中: 

本文链接的文献网络图示:

本文的引文网络