节点文献

基于谱反演方法的叠后纵波阻抗反演

Post-stack P-wave impedance inversion based on spectral inversion

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邢文军曹思远陈思远孙耀光

【Author】 XING Wen-Jun;CAO Si-Yuan;CHEN Si-Yuan;SUN Yao-Guang;College of Geosciences,China University of Petroleum;

【机构】 中国石油大学(北京)地球物理学院

【摘要】 提出一种基于谱反演方法的叠后地震数据纵波阻抗反演算法,用于提高地震反演精度。谱反演在地震高分辨率和反射系数反演中应用广泛,其基于反射系数的奇偶分解,能降低薄层之间的调谐效应,使反演数据体的分辨率得以提高,而由反射系数计算纵波阻抗的过程不适定,分步进行纵波阻抗反演会引入较大的累积误差。本研究提出基于谱反演方法的叠后纵波阻抗反演算法,引入TV正则化约束目标方程,通过迭代求解,可直接得到相对阻抗,然后同预先建立的低频模型进行频率域融合得到绝对阻抗。模型和实际数据说明,相比基于稀疏脉冲反褶积的阻抗反演,本文提出的方法反演分辨率较高,更有利于后续储层预测等研究的开展。

【Abstract】 Based on spectral inversion, this study proposed a p-wave impedance inversion algorithm for post-stack seismic data to improve inversion accuracy.Spectral inversion is widely used in high-resolution seismic inversion and the reflection coefficient inversion.Based on the odd-even decomposition of reflection coefficients, spectral inversion can reduce the tuning effect between thin layers and enhance the resolution of inverted data volumes.However, the calculation of p-wave impedance using reflection coefficients is ill-posed, and the step-by-step inversion of p-wave impedance tends to introduce a large cumulative error.Therefore, this study proposed a post-stack p-wave impedance inversion method based on spectral inversion.This method introduced the objective equation constrained by TV regularization and calculated the relative p-wave impedance using the iterative method.Then, the absolute p-wave impedance was determined through the frequency-domain fusion of the relative p-wave impedance and the pre-built low-frequency model.As demonstrated by the model and actual data, the method proposed in this study has a higher inversion resolution than the impedance inversion based on sparse-spike deconvolution and is more conducive to subsequent research such as reservoir prediction.

【基金】 国家重点研发计划项目(2017YFB0202900)
  • 【文献出处】 物探与化探 ,Geophysical and Geochemical Exploration , 编辑部邮箱 ,2023年02期
  • 【分类号】P618.13;P631.4
  • 【下载频次】57
节点文献中: 

本文链接的文献网络图示:

本文的引文网络