节点文献

基于自动驾驶道路场景的语义分割方法研究

Research on Semantic Segmentation Method Based on Autonomous Driving Road Scene

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张佳琪袁骏惠永科胡勇张睿

【Author】 ZHANG Jia-qi;YUAN Jun;HUI Yong-ke;HU Yong;ZHANG Rui;College of Computer Science and Technology, Taiyuan University of Science and Technology;China Academy of Machinery Science and Technology Group;

【机构】 太原科技大学计算机科学与技术学院中国机械科学研究总院集团有限公司

【摘要】 针对现有的自动驾驶道路场景的语义分割模型在特征提取阶段提取特征不充分以及忽略了不同级别特征图中存在的特征重要性差异进而导致分割结果不佳的问题,提出了一种改进的DeepLab V3+算法,该方法结合了不同的注意力机制;针对原始模型的主干网络结构较为复杂且需要更多的计算资源来训练的问题,将主干网络更换为ResNet50。通过实验验证,本方法平均交并比(MIoU)指数达到了0.73,相较于其他方法具有更高的分割准确度。

【Abstract】 In response to the problem of insufficient feature extraction in the feature extraction stage of existing semantic segmentation models for autonomous driving road scenes, as well as the neglect of feature importance differences in different levels of feature maps, resulting in poor segmentation results, this paper proposes an improved DeepLab V3+ algorithm that combines different attention mechanisms. In response to the complex backbone network structure of the original model and the need for more computing resources for training, this article replaces its backbone network with ResNet50. Through experimental verification, the MIoU(Mean Intersection over Union) index of this method reaches 0.73, which has higher segmentation accuracy compared to other methods.

【基金】 山西省机械产品质量司法鉴定中心企业委托项目(2023069);太原科技大学教学改革与研究项目(JG202266);太原科技大学研究生联合培养示范基地项目(JD2022004);太原科技大学大学生创新创业训练项目(XJ2023101);山西省高等学校教学改革创新项目(J2021429);2023年山西省高等学校教学改革创新项目(J20230845)
  • 【文献出处】 机械工程与自动化 ,Mechanical Engineering & Automation , 编辑部邮箱 ,2023年06期
  • 【分类号】U463.6;TP391.41
  • 【下载频次】115
节点文献中: 

本文链接的文献网络图示:

本文的引文网络