节点文献

影响不同子领域国际合作的距离因素相同吗?——来自计算机科学学科的证据

Do Distance Factors Affect International Collaboration in Different Subfields Equally? Evidence from Computer Science

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵毅章成志习海旭

【Author】 Zhao Yi;Zhang Chengzhi;Xi Haixu;Department of Information Management, School of Economics & Management,Nanjing University of Science & Technology;

【通讯作者】 章成志;

【机构】 南京理工大学经济管理学院信息管理系

【摘要】 探索影响国际科学合作的因素对于提高国际合作水平具有重要意义。然而,现有研究主要聚焦于顶层学科的分析,忽略了影响不同子领域国际合作的距离因素的异质性,研究结论无法为精细化政策的制定提供依据。为此,本文从比较视角出发,基于DBLP数据库中1990—2019年187个国家的计算机科学论文发表数据,分析了计算机科学学科不同子领域的国际合作时空演化模式,并借助零膨胀beta回归模型揭示影响不同子领域、不同时期国际合作的6种距离因素。研究结果表明,从时空分布来看,以计算机科学代表性子领域——人工智能为例,本文发现早期人工智能领域的高强度合作关系主要由美国主导,随着中国、新加坡等新兴人工智能强国逐渐涌现,国际合作模式由“一强多极”转向“多极合作”。从总体的回归结果来看,地理距离、认知距离和经济距离会阻碍所有子领域的国际合作,而认知距离的影响最大,文化距离、企业参与程度距离和政治距离只在部分领域与国际合作存在显著负向相关关系。从时间维度来看,在不同的子领域,地理距离和认知距离的边际效应呈现下降趋势,而经济距离的影响则随着时间变化而增大。

【Abstract】 Understanding the distance factors that influence international scientific collaboration is crucial for enhancing these collaborative efforts. However, previous studies have mostly focused on the investigation of top-level disciplines, ignoring the heterogeneity of distance factors affecting international collaboration in different subfields; therefore, the results of these studies cannot provide a basis for formulating refined policies. From a comparative perspective, this study analyzed the temporal and spatial patterns of international collaboration in the different subfields of computer science based on computer science publication records published by 187 countries between 1990 and 2019 from the database of DBLP computer science bibliography. Subsequently, we used a zero-inflated beta regression model to reveal the influence of six factors on international collaboration for a large set of countries, by different subfields, and over time. From the perspective of the spatio-temporal distribution of international collaboration, using artificial intelligence, a representative subfield of computer science, as an example, this study shows that the early stage of high-intensity collaborative relationships is mainly dominated by the United States. Countries, including China and Singapore, have become increasingly involved in artificial intelligence research over time, and the pattern of international collaboration has shifted from “one strong and multipolar” to “multipolar collaboration”. In addition, from the results of our regression analysis, we identify that geographical distance, cognitive distance, and economic distance obstruct international collaboration in all subfields, with cognitive distance having the highest impact, while cultural distance, degree of company participation, and political distance have significant negative effects only in some subfields. From the temporal dimension, the marginal effect of geographical and cognitive distances on international collaboration has decreased over time, whereas the impact of economic distances has increased.

【基金】 江苏省社会科学基金重点项目“智能化驱动的学者细粒度画像构建研究”(20TQA001)
  • 【文献出处】 情报学报 ,Journal of the China Society for Scientific and Technical Information , 编辑部邮箱 ,2023年12期
  • 【分类号】G350
  • 【下载频次】40
节点文献中: 

本文链接的文献网络图示:

本文的引文网络