节点文献

基于知识增强的多视野表征学习辅助诊断方法

Multi-view Representation Learning Network Based on Knowledge Augmentation for Auxiliary Diagnosis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王好天李鑫关毅杨洋李雪姜京池

【Author】 WANG Haotian;LI Xin;GUAN Yi;YANG Yang;LI Xue;JIANG Jingchi;Language Technology Research Center, Harbin Institute of Technology;AIoT Research Center, Harbin Institute of Technology;

【通讯作者】 关毅;

【机构】 哈尔滨工业大学语言技术研究中心哈尔滨工业大学物联网与泛在智能中心

【摘要】 针对辅助诊断过程中病人所患疾病不单一,多种疾病之间存在内在关联,及长病历文本特征提取较为困难等问题,该文提出一种基于知识增强的多视野表征学习方法。该方法首先使用Bi-LSTM和注意力网络、医疗知识图融合、预训练模型分别从字符视野、实体视野、文档视野提取疾病表征,并通过融合多视野信息从长病历文本中准确抽取疾病诊断相关特征。而后建模疾病间内在关联关系,基于图神经网络方法进行知识融合以增强疾病表征,并实现疾病预测。该模型利用多视野表征学习与知识增强方法,提升了疾病预测的性能,通过结果可视化为模型提供了可解释性。在华为云杯评测数据上的实验表明,该方法优于其他基线方法,消融实验验证了该方法各模块的有效性。

【Abstract】 To model internal correlations between diseases and extract features from long medical records, we propose a multi-view representation learning network based on knowledge augmentation for auxiliary diagnosis. Firstly, the method combines the Bi-LSTM, the attention network, the medical knowledge graph, and the pre-trained models to extract disease representations from character view, entity view, and document view, respectively. Then, the features related to disease diagnosis are accurately extracted from the long medical record text by the fusion of multi-view information. Secondly, the internal correlation between diseases is modeled by knowledge fusion based on the graph neural network to enhance disease representation. Finally, the model uses multi-view representation learning and knowledge enhancement methods to predict disease. Experiments on Huawei Cloud evaluation dataset show that the model is superior to baseline methods, and ablation studies prove the effectiveness of each module in this method.

【基金】 科技创新2030——“新一代人工智能”重大项目(2021ZD0113302)
  • 【文献出处】 中文信息学报 ,Journal of Chinese Information Processing , 编辑部邮箱 ,2023年12期
  • 【分类号】R318;TP391.1
  • 【下载频次】23
节点文献中: 

本文链接的文献网络图示:

本文的引文网络