节点文献

非图宾根基准下LLM ChatGPT的因果发现和因果推理能力

Causal Discovery and Causal Inference of LLM ChatGPT under Non-Tubingen Benchmarks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邱德钧

【Author】 Qiu Dejun;School of Philosophy and Sociology, Lanzhou University;

【机构】 兰州大学哲学社会学院

【摘要】 基于图宾根基准在多学科的因果测试,建立了不同于该基准的两个变量的因果关系对(人文社会科学)因果关系数据库;在此基础上分析了LLM在新的基准下因果发现中的能力和问题;探讨了在因果估计阶段,系统在数据或条件不充分下的因果推理能力。期望LLM以一种新的、友好的因果研究范式与传统方法结合,为我们日常处理因果问题提供全新的助力。

【Abstract】 Based on the Tübingen benchmark for causal testing in multiple disciplines, we built a causal database of causal pairs(humanities and social sciences) for two variables different from the benchmark;on this basis, we analyzed the capabilities and problems of LLM in causal discovery under the new benchmark; and then explored the capabilities of the system for causal inference under insufficient data or conditions in the causal estimation stage. It is expected that LLM provide a new boost to our daily treatment of causal problems with a new and friendly causal research paradigm combined with traditional methods.

【基金】 国家社会科学基金“人工智能中关于因果关系的归纳模型研究”(20BZX107)
  • 【文献出处】 科学·经济·社会 ,Science Economy Society , 编辑部邮箱 ,2023年03期
  • 【分类号】B812
  • 【下载频次】45
节点文献中: 

本文链接的文献网络图示:

本文的引文网络