节点文献
混合遗传灰狼算法在装配车间调度中的应用
Application of Hybrid Genetic Grey Wolf Algorithm in Assembly Constrained Shop Scheduling
【摘要】 以最小化任务的最大完工时间为目标研究了具有装配约束的柔性作业车间静态调度问题,提出了一种混合遗传灰狼算法。在传统遗传算法的基础上进行优化,采用基于工序和机器的双层编码方式,工序插入式解码方法,确保产生活动调度,设计了基于非线性收敛因子的灰狼算子和改进的局部搜索算子,应用于工序交叉更新及变异操作中对机器编码二次更新,提高了算法的局部寻优能力并使其与全局搜索能力得到均衡。通过对算例及实际案例进行仿真测试,验证了算法的可行性和有效性,对收敛速度和寻优能力都有明显的提升。
【Abstract】 The static scheduling problem of flexible job shop with assembly constraints is studied to minimize the maximum completion time of tasks. A hybrid genetic gray wolf algorithm is proposed. On the basis of the traditional genetic algorithm, the grey wolf operator based on the nonlinear convergence factor and the improved local search operator are designed, which are applied to the process cross update and the second update of the machine code in the mutation operation, improving the local search ability of the algorithm and balancing it with the global search ability. The feasibility and effectiveness of the algorithm are verified through the simulation test of the numerical example and the actual case,and the convergence speed and optimization ability are significantly improved.
【Key words】 flexible workshop; genetic algorithm; grey wolf optimization algorithm; convergence factor;
- 【文献出处】 机电工程技术 ,Mechanical & Electrical Engineering Technology , 编辑部邮箱 ,2023年09期
- 【分类号】TP18;TH165
- 【下载频次】28