节点文献

基于C-Informer模型的船舶轨迹预测方法

A Method of Ship Trajectory Prediction Based on a C-Informer Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈立家周乃祺李世刚刘克中王凯周阳

【Author】 CHEN Lijia;ZHOU Naiqi;LI Shigang;LIU Kezhong;WANG Kai;ZHOU Yang;School of Navigation , Wuhan University of Technology;Hubei Key Laboratory of Inland Shipping Technology Wuhan University of Technology;State Key Laboratory of Maritime Technology and Safety,Wuhan University of Technology;Changjiang Maritime Safety Administration;

【通讯作者】 陈立家;

【机构】 武汉理工大学航运学院武汉理工大学内河航运技术湖北省重点实验室武汉理工大学水路交通控制全国重点实验室长江海事局

【摘要】 船舶在复杂环境中的航行受风浪、水深、船舶性能等多种不确定因素的影响,利用数学模型难以准确定义和反映船舶轨迹变化规律。针对此问题,研究了1种基于特征工程及神经网络的船舶运动轨迹多步预测方法,将轨迹预测任务分为数据处理及模型预测2个部分:(1)数据处理模块利用特征工程的方法对AIS轨迹数据进行预处理,首先对原始AIS数据进行清洗,然后利用最大信息系数筛选出与位置预测任务高度相关的特征,并引入变步长的时间间隔信息,解决现有模型只能选取固定时间间隔的数据进行训练和预测的问题,最后重构出高质量的船舶轨迹序列;(2)模型预测模块构建基于C-Informer的船舶轨迹预测模型,利用Informer模型的多头概率稀疏自注意力机制,降低网络模型的时间复杂度,同时基于生成式解码提高预测速度,通过引入因果卷积模块,增加模型对相邻时间轨迹特征的敏感程度,以弥补Informer模型在局部信息抽取时的不足,使模型更适应于船舶轨迹预测任务。基于南京港附近船舶AIS数据的实验结果表明:C-Informer模型的轨迹预测整体均方误差为1.72×10-7,平均绝对误差为2.43×10-4,与原始的Informer模型相比分别降低28.6%和31.9%,且使用筛选后的特征组合训练C-Informer模型,与只包含经纬度的特征组合相比,均方误差和平均绝对误差分别降低57.7%和42.1%。在对不同时间步长的轨迹进行预测时,C-Informer模型预测时间比长短期记忆网络模型最多减少了69.6%,损失最多降低了75.8%。

【Abstract】 The navigation of ships in complex environments is influenced by various uncertain factors, such as wind, waves, water depth, and ship performance, etc. It is challenging to precisely define and reflect the dynamic patterns of ship trajectories simply using mathematical models. To address this issue, a multi-step prediction method for ship trajectories based on feature engineering and neural networks is studied. The task of trajectory prediction is divided into two parts: data processing and model prediction. The data processing module preprocesses AIS trajectory data using feature engineering methods. It starts by cleaning the raw AIS data, then uses the maximal information coefficient to select features highly correlated with the position prediction task. Additionally, a variable time interval information is introduced to address the problem of existing models only being able to select fixed time interval data for training and prediction. This module ultimately reconstructs high-quality ship trajectory sequences. The model prediction module constructs a ship trajectory prediction model based on C-Informer. It utilizes the multi-head ProbSparse self-attention mechanism of the Informer model to reduce the time complexity of the network model. Simultaneously, it enhances prediction speed by generative decoding. By introducing a causal convolution module, the sensitivity of the model to neighboring time trajectory features is increased to compensate for the deficiencies of the Informer model in extracting local information. This adaption makes the model more suitable for ship trajectory prediction tasks. The experimental results based on Automatic Identification System(AIS) data near Nanjing port show that the C-Informer model for trajectory prediction has an overall mean square error(MSE) of 1.72×10-7 and a mean absolute error(MAE) of 2.43×10-4. Compared to the original Informer model, this represents a reduction of 28.6% and 31.9%, respectively. When training the C-Informer model with the selected feature combinations, the MSE and MAE are decreased by 57.7% and 42.1%, respectively, compared to using only latitude and longitude features. In predicting trajectories at different time steps, the C-Informer model reduces prediction time by up to 69.6%compared to the long short-term memory network model, with a maximum loss reduction of 75.8%.

【基金】 国家重点研发计划项目(2019YFB1600603)资助
  • 【文献出处】 交通信息与安全 ,Journal of Transport Information and Safety , 编辑部邮箱 ,2023年06期
  • 【分类号】U675.7
  • 【下载频次】52
节点文献中: 

本文链接的文献网络图示:

本文的引文网络