节点文献

U-Net在肺结节分割中的应用进展

Progress of U-Net applicaitons to lung nodule segmentation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 沈权猷张小波李文豪李礼汉许荣德陈道花李静

【Author】 SHEN Quanyou;ZHANG Xiaobo;LI Wenhao;LI Lihan;XU Rongde;CHEN Daohua;LI Jing;School of Autumation,Guangdong University of Technology;Department of Interventional Radiology,Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences),Southern Medical University;The Second School of Clinical Medicine,Southern Medical University;Department of Pulmonary and Critical Care Medicine,The First People’s Hospital of Yunnan Province(The Affiliated Hospital of Kunming University of Science and Technology);Department of Pulmonary and Critical Care Medicine,Guangdong Provincial People’s Hospital(Guangdong Academy of Medical Sciences),Southern Medical University;

【通讯作者】 李静;

【机构】 广东工业大学自动化学院南方医科大学附属广东省人民医院(广东省医学科学院)微创介入科南方医科大学第二临床医学院云南省第一人民医院(昆明理工大学附属医院)呼吸与危重症医学科南方医科大学附属广东省人民医院(广东省医学科学院)呼吸与危重症医学科

【摘要】 医学上实现自动肺结节精准分割具有十分重要的临床意义。随着计算机视觉的显著进步,深度学习作为人工智能的一部分,在医学图像自动分割中引起了越来越多的关注。U-Net由于在小样本数据集上的良好表现,在医学图像分割领域得到广泛应用。目前,研究人员正在尝试使用不同的U-Net结构,以提高计算机辅助诊断系统在医学图像的肺癌筛查中的性能。首先,围绕肺结节分割任务介绍了当下常用的数据集和评价指标;其次,调查与肺结节相关的U-Net分割技术网络;另外,基于U-Net分别分析与归纳编解码器、跳跃连接和整体结构的改进;最后,还讨论了基于深度学习的自动分割技术的挑战和限制。

【Abstract】 It is of great clinical significance to achieve automatic and accurate segmentation of lung nodules in medicine.With the remarkable progress of computer vision, deep learning as a part of artificial intelligence has attracted more and more attention in the automatic segmentation of medical images. U-Net has been widely used in the field of medical image segmentation due to its good performance on small sample datasets. Researchers are currently trying to use different U-Net structures to improve the performance of computer-aided diagnosis systems in lung cancer screening of medical images. In this work, the datasets and evaluation metrics commonly used in lung nodule segmentation were first introduced, and the U-Netbased automatic segmentation techniques related to lung nodules were investigated. Then, U-Net models and improvements around codecs, skip connections and overall structure were analyzed and summarized. Finally, the challenges and limitations of deep learning-based automatic segmentation techniques were also discussed.

【基金】 云南省重大科技专项(202102AA100012)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2023年S1期
  • 【分类号】R734.2;TP391.41
  • 【下载频次】114
节点文献中: 

本文链接的文献网络图示:

本文的引文网络