节点文献

基于车辆脉冲响应的路面不平度识别方法

Road roughness identification method based on vehicle impulse response

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张青霞侯吉林安新好胡晓阳段忠东

【Author】 ZHANG Qing-xia;HOU Ji-lin;AN Xin-hao;HU Xiao-yang;DUAN Zhong-dong;School of Civil Engineering, Dalian Minzu University;Department of Construction Engineering, Dalian University of Technology;School of Civil and Environmental Engineering, Harbin Institute of Technology;

【通讯作者】 侯吉林;

【机构】 大连民族大学土木工程学院大连理工大学建设工程学部哈尔滨工业大学(深圳)土木与环境工程学院

【摘要】 基于车辆脉冲响应,提出了利用车辆动态响应识别路面不平度的方法。首先,以路面不平度为输入,推导了基于脉冲响应函数的车辆响应计算公式。然后,将脉冲响应函数离散为矩阵的形式,建立了基于脉冲响应矩阵的不平度识别线性方程。同时,考虑前、后轮所经历的路程存在一段重合的特点,构建了前、后轮位置相关性矩阵,降低了待识别的未知数数目。接着,鉴于不平度一般为连续函数的特点,利用荷载形函数的思想,进一步降低待识别的未知数数目,并提高对噪声的鲁棒性,实现路面不平度的实时识别。最后,利用数值仿真和试验验证了本文方法的有效性。

【Abstract】 Based on the vehicle impulse response, a method of pavement roughness identification using vehicle dynamic response was proposed. First, road roughness was taken as input and the equation of vehicle response computation based on the impulse response function was derived. Then, the impulse response function was discretized into the matrix form and a linear equation for road roughness identification was established based on the impulse response matrix. Furthermore, considering that the front and rear wheels experienced the same road roughness, the correlation matrix of the front and rear wheels was constructed, which can decrease the computational work of road roughness identification. Then, take the advantage of the continuity of the road roughness, the load shape function was used to approximate it and thus not only the unknown identification number was further reduced but also the robustness of method to noise was improved, which achieved the real time identification. At last, the effectiveness of the proposed method was verified by numerical simulation and field test.

【基金】 国家自然科学基金项目(51878118);辽宁省教育厅项目(LJKZ0031);中国-中东欧国家高校联合教育项目(2022206)
  • 【文献出处】 吉林大学学报(工学版) ,Journal of Jilin University(Engineering and Technology Edition) , 编辑部邮箱 ,2023年06期
  • 【分类号】U416.2
  • 【下载频次】41
节点文献中: 

本文链接的文献网络图示:

本文的引文网络