节点文献
基于液电馈能悬架的车身姿态控制研究
Research on Vehicle Attitude Control of Hydraulic Electrical Energy-Regenerative Suspension
【摘要】 目前大多自动驾驶车辆的转向制动无法实现类人操作,尤其在复杂路况下的连续转向可能导致车身大幅侧倾与俯仰,使乘员产生紧张、眩晕等不舒适感。因此,基于液电式馈能悬架提出一种馈能电路恒流控制方法,实现阻尼力与车身姿态的耦合控制以提高车身稳定性。根据车辆动力学搭建十四自由度整车模型,选取蛇行工况进行仿真分析并完成实车试验。结果表明,液电馈能悬架系统采用恒流控制后比使用传统悬架的车身侧倾角减小32%,俯仰角减小1.67%,显著提高了车身稳定性,验证了所提控制方法的有效性。
【Abstract】 At present, the steering and braking of most autonomous vehicles cannot achieve human-like operation, continuous steering may cause the substantially roll and pitch of the vehicle body especially in complex road conditions, causing the occupants to produce nervousness, dizziness, and other uncomfortable feelings.Therefore, a constant current method was proposed based on the hydraulic electrical energy-regenerative suspension to achieve the coupling control of the damping force and the vehicle attitude to improve the stability of the vehicle body.The 14DOF vehicle model was built according to vehicle dynamics, the snaking condition was selected for simulation analysis, and the real vehicle test was completed.The results show that the body roll angle of the hydraulic electrical energy-regenerative suspension system which adopts the constant current control is reduced by 32%,and the pitch angle is reduced by 1.67% compared with the traditional suspension, which significantly improves the vehicle body stability and verifies the effectiveness of the proposed control method.
【Key words】 Hydraulic electrical energy-regenerative suspension; Constant current control; Vehicle attitude;
- 【文献出处】 机床与液压 ,Machine Tool & Hydraulics , 编辑部邮箱 ,2023年17期
- 【分类号】U463.33
- 【下载频次】3