节点文献

基于改进BiSeNet的实时图像语义分割

Real-time semantic segmentation based on improved BiSeNet

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 任凤雷杨璐周海波张诗雨何昕徐文学

【Author】 REN Fenglei;YANG Lu;ZHOU Haibo;ZHANG Shiyv;HE Xin;XU Wenxue;Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,School of Mechanical Engineering, Tianjin University of Technology;National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology;Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences;Transcend Communication Technology Tianjin Co., Ltd;

【通讯作者】 杨璐;

【机构】 天津理工大学天津市先进机电系统设计与智能控制重点实验室天津理工大学机电工程国家级实验教学示范中心中国科学院长春光学精密机械与物理研究所天津卓越信通科技有限公司

【摘要】 为了提升图像语义分割算法的性能,使其同时满足准确性和实时性需求,本文提出了一种基于改进BiSeNet的实时图像语义分割算法。首先,通过使双分支网络头部共享以消除BiSeNet网络结构部分通道和参数的冗余,同时有效提取图像的浅层特征;然后,将上述共享网络拆分为由细节分支和语义分支组成的双分支网络,并分别用于提取空间细节信息和语义上下文信息;此外,在语义分支尾部引入通道和空间注意力机制以增强特征表达能力,通过使用双注意力机制对BiSeNet算法进行优化以更有效地提取语义上下文特征;最后,对细节分支和语义分支的特征进行融合并通过上采样操作恢复至输入图像分辨率大小以实现图像语义分割。本文算法在Cityscapes数据集以95.3FPS的实时性表现达到77.2%mIoU的准确性;在CamVid数据集以179.1 FPS的实时性表现达到73.8%mIoU的准确性。实验结果表明,本文算法在实时性和准确性方面获得了很好的平衡,其语义分割性能相较于BiSeNet算法及其它现有算法得到了显著的提升。

【Abstract】 To improve the performance of image semantic segmentation on accuracy and efficiency for practical applications, in this study, we propose a real-time semantic segmentation algorithm based on improved BiSeNet. First, the redundancy of certain channels and parameters of BiSeNet is eliminated by sharing the heads of dual branches, and the affluent shallow features are effectively extracted at the same time. Subsequently, the shared layers are divided into dual branches, namely, the detail branch and the semantic branch, which are used to extract detailed spatial information and contextual semantic information, respectively. Furthermore, both the channel attention mechanism and spatial attention mechanism are introduced into the tail of the semantic branch to enhance the feature representation; thus the BiSeNet is optimized by using dual attention mechanisms to extract contextual semantic features more effectively. Finally, the features of the detail branch and semantic branch are fused and up-sampled to the resolution of the input image to obtain semantic segmentation. Our proposed algorithm achieves 77. 2% mIoU on accuracy with real-time performance of 95. 3 FPS on Cityscapes dataset and 73. 8% mIoU on accuracy with realtime performance of 179. 1 FPS on CamVid dataset. The experiments demonstrate that our proposed semantic segmentation algorithm achieves a good trade-off between accuracy and efficiency. Furthermore, the performance of semantic segmentation is significantly improved compared with BiSeNet and other existing algorithms.

【基金】 国家自然科学基金资助项目(No.51275209);天津市自然科学基金重点项目资助(No.17JCZDJC30400);广东省重点领域研发计划资助项目(No.2019B090922002)
  • 【文献出处】 光学精密工程 ,Optics and Precision Engineering , 编辑部邮箱 ,2023年08期
  • 【分类号】TP391.41
  • 【下载频次】339
节点文献中: 

本文链接的文献网络图示:

本文的引文网络