节点文献
渗透汽化-酯化反应耦合生产乙酸乙酯过程模拟与分析
Simulation and analysis of pervaporation-esterification coupling process for ethyl acetate production
【摘要】 为了解决乙酸乙酯生产过程中转化率低的问题,提出渗透汽化-酯化反应耦合技术。首先利用Aspen Custom Modeler (ACM)软件建立内置式连续性渗化膜反应器(PVMR)模型并进行验证,然后利用Aspen Plus考察反应温度、进料酸醇比、膜面积与反应液体积比对PVMR过程性能的影响。结果表明,乙醇转化率增量与反应温度之间呈正相关性;随着进料酸醇比增大,乙醇转化率增量呈先增大后减小趋势;增加膜面积与反应液体积比能促进PVMR性能。在反应温度90℃,进料酸醇比为2,膜面积与反应液体积比为100 m-1时,PVMR过程乙醇转化率为82.4%。研究结果为PVMR生产乙酸乙酯节能集成工艺开发提供基础和参考。
【Abstract】 In order to solve the problem of low ethanol conversion in the production of ethyl acetate via esterification of acetic acid and ethanol,a pervaporation-esterification coupling technology was proposed.A mathematic model of the pervaporation membrane reactor (PVMR) was established using the Aspen Custom Modeler and verified with the experiment results.Effects of reaction temperature,acid to alcohol ratio and membrane area to reaction liquid volume ratio on process performance were investigated in detail by Aspen Plus.The results show that there is a positive correlation between ethanol conversion increment and reaction temperature.With the increase of acid to alcohol ratio,ethanol conversion increment increases first and then decreased.The performance of PVMR is improved by enhancing the ratio of the membrane area to the volume of the reaction liquid.The optimum conditions were investigated as follows:reaction temperature 90°C,acid to alcohol ratio 2,and the ratio of the membrane area to the volume of the reaction liquid is 100 m-1.Under the optimal conditions,ethanol conversion was 82.4% in the PVMR process.The results are useful in energy saving integrated PVMR processes for ethyl acetate production.
【Key words】 membrane reactor; pervaporation; ethyl acetate; computer simulation; esterification;
- 【文献出处】 高校化学工程学报 ,Journal of Chemical Engineering of Chinese Universities , 编辑部邮箱 ,2023年02期
- 【分类号】TQ225.24
- 【下载频次】49