节点文献
高耐蚀Fe-Cr-Ni系中熵合金在H2SO4溶液中的腐蚀行为
Corrosion Behavior of High Corrosion Resistant Fe-Cr-Ni Medium-Entropy Alloy in H2SO4 Solution
【摘要】 开发了一种低成本Fe-Cr-Ni系中熵合金,通过与316L不锈钢进行对比研究了该中熵合金在0.1 mol·L-1 H2SO4溶液中的耐腐蚀性能,分析了其表面钝化膜的保护能力。结果表明:与316L不锈钢相比,试验合金的自腐蚀电位更高,自腐蚀电流密度更小,说明其腐蚀抗力更强,腐蚀速率更慢,耐腐蚀性能更好;试验合金表面钝化膜中的铬、镍元素含量更高,铁、锰元素含量更低,电荷转移电阻为316L不锈钢的8.1倍,说明合金表面形成了更具保护力的钝化膜;试验合金具有稳定的单相面心立方固溶体组织,元素偏析程度较低,使得合金钝化能力提高、腐蚀敏感性降低,从而保证了钝化膜的稳定性和保护能力。
【Abstract】 A low-cost Fe-Cr-Ni medium-entropy alloy was developed. The corrosion resistance of the medium-entropy alloy in a 0.1 mol·L-1 H2SO4 solution was studied by comparing with that of 316L stainless steel, and the protective ability of the surface passive film was analyzed. The results show that comparing with 316L stainless steel, the test alloy had a higher free-corrosion potential and a smaller free-corrosion current density, indicating the stronger corrosion resistance, slower corrosion rates and better corrosion resistance. Comparing with those of 316L stainless steel, the content of chromium and nickel in the passive film on surface of the test alloy was higher, and the content of iron and manganese was lower; the charge transfer resistance was 8.1 times that of 316L stainless steel. This showed that a more protective passive film was formed on surface of the alloy. The test alloy had a stable single-phase face-centered cubic solid solution structure, and the degree of element segregation was low, which improved the passivation ability and reduced the corrosion sensitivity of the alloy, thus ensuring the stability and protection ability of the passive film.
【Key words】 medium-entropy alloy; sulfuric acid; electrochemical corrosion; passive film;
- 【文献出处】 机械工程材料 ,Materials for Mechanical Engineering , 编辑部邮箱 ,2023年02期
- 【分类号】TG172
- 【下载频次】98