节点文献

基于自适应粒子群算法的煤矿井下高精度定位方法

High-precision positioning method for underground coal mine based on adaptive PSO algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵新平李高飞冀杰祝双强赵菊敏

【Author】 ZHAO Xinping;LI Gaofei;JI Jie;ZHU Shuangqiang;ZHAO Jumin;Electromechanical Power Department,Huayang New Material Technology Group Co.,Ltd.;College of Information and Computer,Taiyuan University of Technology;Xinyuan Company,Lu’an Chemical Group Co.,Ltd.;

【通讯作者】 赵菊敏;

【机构】 华阳新材料科技集团有限公司机电动力部太原理工大学信息与计算机学院,潞安化工集团新元公司

【摘要】 针对在煤矿井下传统Wi-Fi测距定位技术受非视距传播影响定位精度降低问题,提出一种基于改进粒子群算法优化最小二乘支持向量机的5G井下高精度定位方法。为实现视距信号和非视距信号分类,采用自适应惯性因子和变异过程的改进粒子群算法对最小二乘支持向量机参数寻优以提高训练模型的分类准确度;使用训练得到的分类模型对信号分类并使用视距信号进行基于到达时间的测距定位,提高定位精度。仿真结果表明,在实际场景中所提算法的分类准确度较支持向量机提高5.15%;且较传统粒子群优化最小二乘支持向量机定位误差小于3 m的概率提高5.66%,误差小于1 m的概率提高7.83%。

【Abstract】 In order to address the problem of reduced positioning accuracy of traditional Wi-Fi positioning technology due to non-line-of-sight propagation in underground coal mines. A combination method which based on improved Particle Swarm Optimization optimizes Least Squares Support Vector Machines is proposed for high positioning accuracy in 5G underground mines. To classify both line-of-sight and nonline-of-sight signals,the Least Squares Support Vector Machines is optimized using an improved PSO with an adaptive inertia factor and a mutation process to improve the classification accuracy of the training model;The classification model is used to classify the signals and the line-of-sight signals are used to improve the localization accuracy based on the arrival time. The simulation results show that the classification accuracy of the proposed method in the actual coal mine scenario is improved by 5.15%,and the probability of localization error less than three meters and one meter is improved by 5.66% and 7.83% compared with the traditional Particle Swarm Optimization LS-SVM.

【基金】 山西省重点研发计划重点项目(YM19017)
  • 【文献出处】 电子设计工程 ,Electronic Design Engineering , 编辑部邮箱 ,2023年08期
  • 【分类号】TP18;TD76
  • 【下载频次】97
节点文献中: 

本文链接的文献网络图示:

本文的引文网络