节点文献

基于改进版YOLOX的水下结构物裂纹检测算法研究

Research on algorithm crack detection of underwater structures based on improved YOLOX

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王远顺黄博伦杨启

【Author】 WANG Yuan-shun;HUANG Bo-lun;YANG Qi;School of Naval Architecture, Ocean and Civil Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University;Shanghai Jiaotong University Underwater Engineering Institute Co., Ltd.;

【通讯作者】 杨启;

【机构】 上海交通大学海洋工程国家重点实验室,船舶海洋与建筑工程学院上海交大海洋水下工程科学研究院有限公司

【摘要】 裂纹是水下结构物中最常见的缺陷之一,得不到及时检修可能会危害整体结构安全,造成重大事故。传统的裂纹检测方法费时费力且效率低下,文中提出了一种由水下机器人搭载目标检测算法的水下裂纹检测方法。算法基于YOLOX模型,在检测网络中引入自注意力机制和添加空洞空间卷积池化金字塔(ASPP)结构,同时改进激活函数,并制作了水下裂纹数据集。将算法在数据集上进行试验,结果表明,改进后的算法训练损失更低,模型收敛更快,AP值相比于原始YOLOX模型提升了2.07%,相比于YOLOv5提升了4.35%;使用不同大小的数据集进行试验,发现改进后的算法随着数据集的增大检测性能提升更快,更适用于大规模数据集;最后将算法应用于水下裂纹的检测取得了较为良好的识别结果。

【Abstract】 Cracks are one of the most common defects in underwater structures. Failure to repair them in time may endanger the safety of the overall structure and cause major accidents. Traditional crack detection method consumes a lot of manpower and material resources with low efficiency. Therefore, an underwater crack detection method based on the target detection algorithm of underwater robot deployment is proposed. Based on YOLOX model, self-attention mechanism and ASPP structure were introduced into the detection network, activation function was improved, and an underwater crack data set was made. The algorithm is tested on the underwater crack data set. The results show that the improved algorithm has lower training loss and faster model convergence. The AP value is increased by 2.07% compared with the original YOLOX model, which is 4.35%higher than YOLOv5. Experiments with data sets of different sizes show that the detection performance of the improved algorithm improves faster with the increase of data sets, and it is more suitable for large-scale data sets. Finally, the algorithm is applied to the detection of underwater cracks and obtains relatively good recognition results.

【关键词】 水下结构物裂纹目标检测YOLOX
【Key words】 underwater structurecracktarget detectionYOLOX
【基金】 中国博士后科学基金面上项目(2022M712037)
  • 【文献出处】 中国港湾建设 ,China Harbour Engineering , 编辑部邮箱 ,2023年04期
  • 【分类号】TP391.41
  • 【下载频次】82
节点文献中: 

本文链接的文献网络图示:

本文的引文网络