节点文献

贵金属三效催化剂空燃比特性的全智能分析方法

A fully intelligent analysis method for air-to-fuel ratio characteristics of precious metal-based three-way catalysts

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘艺琴王成雄徐滢赵云昆张爱敏彭玮

【Author】 LIU Yiqin;WANG Chengxiong;XU Ying;ZHAO Yunkun;ZHANG Aimin;PENG Wei;State-Local Joint Engineering Laboratory of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalyst Co.Ltd.;Faculty of Information Engineering and Automation, Kunming University of Science and Technology;Artificial Intelligence Research Center, Web Front End Development Research Center, Yunnan Open University;Sino-Platinum Metals Co.Ltd.;

【通讯作者】 彭玮;

【机构】 昆明贵研催化剂有限公司贵金属催化技术与应用国家地方联合工程实验室昆明理工大学信息工程与自动化学院云南开放大学人工智能研究中心Web前端开发研究中心贵研铂业股份有限公司

【摘要】 空燃比特性是衡量贵金属三效催化剂性能的关键指标之一,其测试的准确性、时效性、经济性在一定程度上制约高效催化剂的研发。在借助测试成本相对低廉的实验室模拟评价测试的基础上,提出了基于模拟退火算法的空燃比特性全智能分析方法。该方法可自动识别O2以及CO浓度最优的第一个突变点,进而计算其余突变点的位置,同时获取NO、NO2、CO等物质的初始浓度和实时浓度。在计算氧过量系数(λ)和A/F时,充分考虑O2、NO、NO2、CO等物质的浓度对空燃比的影响。研究结果表明:采用智能方法可获得与常规手动数据处理方法相当甚至更优的结果,单组数据的处理周期从50 min直接降低至0.2~2 s。

【Abstract】 Air-fuel ratio characteristics are one of the significant indicators to measure the performance of precious metal-based three-way catalysts. The accuracy, timeliness and economy of their testing restrict the development of the highly-efficient catalysts to a certain extent. On the basis of low-cost laboratory simulation evaluation test, the work proposed a fully intelligent analysis method for air-fuel ratio characteristics using simulated annealing algorithm. The method can automatically identify the first mutation point with optimal O2 and CO concentration, and then calculate the locations of other mutation points. Meanwhile, the initial and real-time concentrations of NO, NO2, CO and other substances can be obtained. When the oxygen excess coefficient(λ) and A/F is calculated, the influence of the concentration of O2, NO, NO2 and CO on the air-fuel ratio has fully been considered. The results show that the intelligent method can obtain the same or even better results than the conventional manual data processing method, and the processing period of a single set of data will be reduced directly from 50 min to 0.2~2 s.

【基金】 云南省重大科技专项(202002AB080001-1);云南省基础研究专项(202101AT070237);移动源污染排放控制技术国家工程实验室开放基金(NELMS2019C01)
  • 【分类号】TQ426;X734.2
  • 【下载频次】32
节点文献中: 

本文链接的文献网络图示:

本文的引文网络