节点文献

基于TSSI和STB-CNN的跌倒检测算法

Fall Detection Algorithm Based on TSSI and STB-CNN

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄晓湧李伟彤

【Author】 Huang Xiao-yong;Li Wei-tong;School of Information and Engineering, Guangdong University of Technology;

【通讯作者】 李伟彤;

【机构】 广东工业大学信息工程学院

【摘要】 跌倒行为会给老人特别独居老人带来严重伤害,准确识别跌倒并及时报警可以有效降低这种危险。本文提出一种基于树结构骨架图像(Tree Structure Skeleton Image,TSSI)和可学习时空块卷积神经网络(Spatio-temporal Block Convolution Neural Network,STB-CNN)的跌倒检测方法。首先使用三维姿态估计算法提取人体关节点,进而获得骨架序列;然后利用基于深度优先搜索(Depth First Search,DFS)算法将骨架序列编码为TSSI;最后构建由时空差分模块、可学习时空框架和时空多分支卷积模块组成的可学习STB-CNN网络,实现跌倒检测。该方法在公开数据集和自建数据集上进行仿真实验分别取得98.6%和98.3%的准确率,优于其他相关算法。

【Abstract】 Falling behavior will bring serious injury to the elderly, especially to the elderly living alone. How to correctly identify the falling behavior and issue a warning is an important factor for reducing the injury. A fall detection algorithm is proposed, which is based on TSSI(tree structure skeleton image) and learnable STB-CNN(spatio-temporal block convolutional neural network). Firstly, human joint point is extracted by the threedimensional pose estimation algorithm, and the corresponding skeleton sequence can be obtained. Secondly, the skeleton sequence is encoded into TSSI by the algorithm based DFS(depth first search) method. Finally, a learnable STB-CNN is proposed to classify TSSI and detect the fall behavior, which consists of spatio-temporal difference module, learnable spatio-temporal framework and spatio-temporal multi-branch convolution module,.Experiments are carried out on the public datasets UR FALL Detection Datasets and the simulation datasets.Experimental results are shown that our fall detection algorithm is more accurate than other related algorithms,especially the accuracy to 98.6% and 98.3% respectively.

【基金】 广东省科技计划项目(2017A010101016)
  • 【文献出处】 广东工业大学学报 ,Journal of Guangdong University of Technology , 编辑部邮箱 ,2023年04期
  • 【分类号】TP183;TP391.41
  • 【下载频次】5
节点文献中: 

本文链接的文献网络图示:

本文的引文网络