节点文献

基于YOLOX融合自注意力机制的FSA-FPN重构方法

FSA-FPN reconstruction method that fused self-attention mechanism based on YOLOX

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 安鹤男管聪邓武才杨佳洲马超

【Author】 An Henan;Guan Cong;Deng Wucai;Yang Jiazhou;Ma Chao;College of Electronics and Information Engineering,Shenzhen University;Institute of Microscale Optoelectronics,Shenzhen University;

【通讯作者】 管聪;

【机构】 深圳大学电子与信息工程学院深圳大学微纳光电子学研究院

【摘要】 随着目前目标检测任务输入图像分辨率的不断增大,在特征提取网络的感受野不变的情况下,网络提取的特征信息会越来越局限,相邻特征点之间的信息重合度也会越来越高。提出一种FSA(Fusion Self-Attention)-FPN,设计SAU(Self-Attention Upsample)模块,SAU内部结构通过CNN与自注意力机制(Self-Attention)进行交叉计算以进一步进行特征融合,并通过重构FCU(Feature Coupling Unit)消除二者之间的特征错位,弥补语义差距。以YOLOX-Darknet53为主干网络,在Pascal VOC2007数据集上进行了对比实验。实验结果表明,对比原网络的FPN,替换FSA-FPN后的平均精度值m AP@[.5:.95]提升了1.5%,预测框的位置也更为精准,在需要更高精度的检测场景下有更为出色的使用价值。

【Abstract】 With the increasing resolution of the input image of the current target detection task,the feature information extracted from the feature extraction network will become more and more limited under the condition that the receptive field of the feature extraction network remains unchanged,and the information coincidence degree between adjacent feature points will also become higher and higher.This paper proposes an FSA(fusion self-attention)-FPN,and designs SAU(self-attention upsample) module.The internal structure of SAU performs cross calculation with self-attention mechanism and CNN to further Feature fusion,and reconstructs FCU(feature coupling unit) to eliminate feature dislocation between them and bridge semantic gap. In this paper,a comparative experiment is carried out on Pascal VOC2007 data set using YOLOX-Darknet 53 as the main dry network. The experimental results show that compared with the FPN of the original network,the average accuracy of MAP@ [.5:.95] after replacing FSA-FPN is improved by 1.5%,and the position of the prediction box is also more accurate.It has better application value in detection scenarios requiring higher accuracy.

  • 【文献出处】 电子技术应用 ,Application of Electronic Technique , 编辑部邮箱 ,2023年03期
  • 【分类号】TP391.41
  • 【下载频次】93
节点文献中: 

本文链接的文献网络图示:

本文的引文网络