节点文献

基于1D-Concatenate的信道估计DNN模型优化方法

1D-Concatenate based channel estimation DNN model optimization method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 卢敏秦泽豪陈志辉张敏乐光学

【Author】 LU Min;QIN Zehao;CHEN Zhihui;ZHANG Min;YUE Guangxue;College of Science, Jiangxi University of Technology;College of Information Science and Engineering, Jiaxing University;Zhejiang Key Laboratory of Medical Electronics and Digital Health;

【通讯作者】 乐光学;

【机构】 江西理工大学理学院嘉兴学院信息科学与工程学院浙江省医学电子与数字健康重点实验室

【摘要】 为提高DNN模型在无线通信中信道估计精度,提出一种基于1D-Concatenate的信道估计DNN模型优化方法。该方法将Concatenate进行一维(1D)数据转换,以跳跃连接的方式引入DNN模型,抑制梯度消失问题,运用1D-Concatenate恢复网络训练过程中丢失的数据特征,提高DNN信道估计精度。为验证优化方法的有效性,选取较典型的基于DNN的无线通信信道估计模型进行对比仿真实验。实验结果表明,本文提出的优化方法对已有DNN模型的估计增益提升可达77.10%,在高信噪比下信道增益提升可达3 dB。该优化方法能有效提高DNN模型在无线通信中的信道估计精度,特别是高信噪比下提升效果显著。

【Abstract】 In order to improve the channel estimation accuracy of DNN model in wireless communication, a DNN model optimization method based on 1D-Concatenate was proposed. In this method, Concatenate performs one-dimensional data transformation, the DNN model was introduced by hopping connection, the gradient disappearance problem was suppressed, and 1D-Concatenate was used to restore the data features lost during network training to improve the accuracy of DNN channel estimation. In order to verify the effectiveness of the optimization method, a typical DNN-based wireless communication channel estimation model was selected for comparative simulation experiments. Experimental results show that the estimated gain of the existing DNN model can be increased by 77.10% by the proposed optimization method, and the channel gain can be increased by up to 3 d B under high signal-to-noise ratio. This optimization method can effectively improve the channel estimation accuracy of DNN model in wireless communication, especially the improvement effect is significant under high signal-to-noise ratio.

【基金】 国家自然科学基金重点项目(No.U19B2015)~~
  • 【文献出处】 电信科学 ,Telecommunications Science , 编辑部邮箱 ,2023年04期
  • 【分类号】TN929.5;TP183
  • 【下载频次】43
节点文献中: 

本文链接的文献网络图示:

本文的引文网络