节点文献

1990—2020年中国耕地景观细碎化演变特征与趋势预判

Characteristic evolution and trend prediction of cultivated land landscape fragmentation in China from 1990 to 2020

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘晶金晓斌徐伟义王世磊周寅康

【Author】 LIU Jing;JIN Xiaobin;XU Weiyi;WANG Shilei;ZHOU Yinkang;School of Geography and Ocean Science, Nanjing University;Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing University;Jiangsu Land Development and Consolidation Technology Engineering Center;

【通讯作者】 金晓斌;

【机构】 南京大学地理与海洋科学学院自然资源部海岸带开发与保护重点实验室江苏省土地开发技术工程中心

【摘要】 系统揭示中国耕地景观细碎化的多尺度特征演进规律并就其未来发展趋势进行预测,对优化耕地资源利用与管理、促进农业适度规模经营等具有重要意义。本文以耕地景观细碎化的理论认知为基础,基于中国土地利用数据,集成泰尔指数、尺度方差及分解、马尔可夫链等数理统计和空间分析方法,按照国家、农业区、省域、市域、县域5级尺度,深入探讨1990—2020年中国耕地景观细碎化的多尺度特征演进规律与尺度嵌套效应,并据此预测其长期演变趋势。结果表明:(1)中国耕地景观细碎化的格局特征具备明显的空间尺度差异,细碎化指数在县域以地势三级阶梯分界线成梯状分布,在市域依托“胡焕庸线”形成东低西高的“双核心—环核群—带状区”分异格局,在省域则呈现由东向西、自东北至西南逐级提高的同心圆圈层式结构。研究期内县域、市域、省域、农业区尺度差异对中国耕地细碎化总体差异的平均贡献分别为84.87%、14.64%、0.31%、0.18%,尺度越小越能反映耕地细碎化的空间异质性。(2) 1990—2020年中国耕地景观细碎化呈增强态势,但随时间推移增速减缓,并在2017年以后呈现出明显的减弱态势。其中,2000—2010年是耕地细碎化发展最为剧烈的时期,在不同尺度下均呈现细碎度增长幅度最大、覆盖范围最广、涉及维度最多等特点。(3)近30年中国耕地景观细碎化总体表现为“东增西减”,但不同尺度下耕地细碎化时空演变的趋势、强度、范围等存在较大差异。总体上,经济发达且农业资源禀赋优越的黄淮海平原、长江中下游平原中东部、四川盆地等地区是耕地细碎化增强的高值集聚区。(4)耕地景观细碎化的长期演变将遵循由低向高渐次递增的发展过程,低、较低等级细碎度县域将大幅减少,较高、高等级的县域将明显增加,同时,邻域背景对耕地细碎化的发展演化发挥重要作用。

【Abstract】 It is of great significance to systematically reveal the multi-scale evolution patterns and future trends of cultivated land landscape fragmentation(CLLF) in China since 1990 for optimizing the utilization and management of cultivated land resources and promoting appropriate scale agricultural management. This paper first discusses the theoretical cognition of CLLF, then systematically analyzes the evolution of multi-scale characteristics and scale nesting effect of CLLF at agricultural, provincial, municipal and county scales in China from1990 to 2020, and predicts CLLF long-term evolution trend based on the data of China’s land use in the study period and the spatial analysis and mathematical statistics methods such as Theil Index, scale variance, and Markov chain. Results showed that:(1) The pattern characteristics of CLLF in China show obvious scale differences, manifested as a ladder pattern along the three steps of China’s terrain at the county scale, a cluster pattern of dual core, ring core group and belt area relying on the "Hu Huanyong Line" at the municipal scale, and a gradually strengthened concentric circular layered structure from east to west and from northeast to southwest at the provincial scale. The average contribution of differences in county, municipal, provincial and agricultural scales to the overall difference of CLLF in China is 84.87%, 14.64%, 0.31% and 0.18%, respectively, indicating that the smaller the scale, the better it can reflect the spatial heterogeneity of CLLF.(2) CLLF showed a trend of enhancement on multiple scales during 1990-2020, but the growth rate slowed down over time.Among them, the development of CLLF was the most intense during 2000-2010.(3) CLLF in China during 1990-2020 generally increased in the east and decreased in the west, but there were great differences in spatio-temporal evolution of the trend, intensity and spatial range at different scales. Spatially, major grain-producing areas such as the Huang-Huai-Hai Plain, the central and eastern parts of middle-lower Yangtze Plain and the Sichuan Basin became highvalue agglomeration areas with increased fragmentation.(4) The long-term CLLF in China will follow the development pattern of a gradual increase from low to high. The counties with lowor relative low level of fragmentation will decrease greatly, while the counties with higher-or high-level will increase significantly. Meanwhile, different neighborhoods will also lead to significant differences in the long-term evolution of CLLF.

【基金】 国家自然科学基金项目(42201269);教育部人文社会科学研究青年基金项目(22YJC630087);江苏省自然科学基金项目(BK20210192)~~
  • 【文献出处】 地理学报 ,Acta Geographica Sinica , 编辑部邮箱 ,2023年09期
  • 【分类号】TU984.18;F323.211
  • 【下载频次】101
节点文献中: 

本文链接的文献网络图示:

本文的引文网络