节点文献
温度响应性双面纳米纤维的制备和性能
Preparation and Properties of Temperature-Responsive Janus Nanofibers
【摘要】 使用N-异丙基丙烯酰胺和丙烯酰氧基二苯甲酮共聚合成的温度响应性聚合物和以用甲基丙烯酸缩水甘油酯改性的聚乙烯醇为成纤聚合物、以水为溶剂,配制纺丝液并将并列静电纺丝和紫外光辐照相结合制备出升温可卷曲的温度响应性双面纳米纤维。用扫描电镜和透射电镜均观察到这种纳米纤维具有双面结构,用核磁共振波谱仪证实用紫外光辐照可使双面纳米纤维中形成交联结构。研究了并列静电纺丝的工艺条件对双面纳米纤维的产率和平均直径的影响。结果表明,在两种纺丝液的流速不超过0.3 mL/h、纺丝电压不超过22 kV的条件下双面纳米纤维的产率高于90%,改变接收距离可在一定范围内调节双面纳米纤维的平均直径。这种双面纳米纤维在水中具有良好的稳定性,其中可水溶的聚合物含量(质量分数)低于2%。当水介质温度从25℃升高到35℃时,这种纳米纤维从伸展形态转变为卷曲的形态。这种对温度的响应性具有可逆性。
【Abstract】 A temperature-responsive polymer was synthesized by co-polymerization of N-isopropylacrylamide and acryloyloxybenzophenone. Meanwhile, poly(vinyl alcohol)(PVA) was modified by glycidyl methacrylate. Taking the synthesized polymer and the modified PVA as fiber-forming precursor reagents, of which spinning solutions were then prepared, respectively as the raw materials for producing fiber. Finally, the temperature-responsive Janus nanofibers were fabricated by side-by-side electrospinning under UV irradiation. Scanning electron microscope and transmission electron microscope observation results show that the prepared nanofibers have double-faced structure. The results of nuclear magnetic resonance spectroscopy reveal that the applied ultraviolet irradiation facilitates the formation of crosslinking structure for the double-faced nanofibers. The effect of side-by-side electrospinning process conditions on the yield and average diameter of the Janus nanofibers was investigated, it was found that the yield of the Janus nanofibers can exceed 90% when the flow rates of the two spinning solutions are less than 0.3 m L/h and the spinning voltage is lower than 22 kV. In addition, the average diameter of the Janus nanofibers can be adjusted by changing the receiving distance within a certain range. The prepared Janus nanofibers with a water-soluble polymer content(mass fraction) of less than 2% have good stability in water. When the temperature of the aqueous medium increased from 25℃ to 35℃, the prepared Janus nanofibers can transform from a stretching configuration to a curling one, and this temperature-responsiveness is reversible.
【Key words】 composite; Janus nanofibers; side-by-side electrospinning process; temperature-responsiveness; curling upon temperature rising; ultraviolet light radiation;
- 【文献出处】 材料研究学报 ,Chinese Journal of Materials Research , 编辑部邮箱 ,2023年04期
- 【分类号】TQ340.64;TB383.1
- 【下载频次】55