节点文献

高斯混合模型下的异源建筑物点云配准

Cross-source building point cloud registration based on Gaussian mixture model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴广钰吉文来李熹微卢刚檀丁

【Author】 WU Guangyu;JI Wenlai;LI Xiwei;LU Gang;TAN Ding;School of Geomatics Science,Nanjing Tech University;Real Estate Transaction Registration Center of Jiang Bei New Area;Jiangsu Province Surveying & Mapping Engineering Institute;

【通讯作者】 吉文来;

【机构】 南京工业大学测绘科学与技术学院南京市江北新区不动产交易登记中心江苏省测绘工程院

【摘要】 针对异源点云配准存在密度变化、尺度差异、噪声异常和数据缺失等问题,提出了基于高斯混合模型的点云配准模型。通过高斯混合模型描述点云的三维信息,将两片点云的配准问题转化为求解对应高斯混合模型的概率密度估计问题。针对异源点云的噪声,使用能够覆盖点云的最小边界框的体积的均匀分布描述噪声和离群值。选用某水塔作为实验对象,比较基于高斯混合模型的异源点云配准和迭代最近点算法的优劣。实验表明,基于高斯混合模型的异源点云配准在运行时间和精度上都要优于迭代最近点法。

【Abstract】 Aiming at the problems of density variation,scale difference,large amount of noise and missing data in heterogeneous point cloud registration,a heterogeneous building point cloud registration model based on Gaussian mixture model(Gaussian-based Cross-sourced Registration,GCR) is proposed.The point cloud is described based on the Gaussian mixture model,and the registration problem of two point clouds is transformed into the probability density estimation problem of solving the corresponding Gaussian mixture model.For noise in heterogeneous point clouds,noise and outliers are described using a uniform distribution over the volume of the smallest bounding box of the target point set.A water tower is selected as the test object,and the advantages and disadvantages of heterogeneous point cloud registration and iterative closest point algorithm based on Gaussian mixture model are compared and analyzed.Experiments show that heterogeneous point cloud registration based on Gaussian mixture model outperforms iterative closest point method in terms of runtime and accuracy.

【基金】 国家自然科学基金项目(41974214);江苏省自然资源科技项目(2022021);江苏省自然资源发展专项资金(海洋科技创新)项目(JSZRIIYKJ0202101);江苏省研究生科研与实践创新计划项目(KYCX23_1464)
  • 【文献出处】 测绘科学 ,Science of Surveying and Mapping , 编辑部邮箱 ,2023年11期
  • 【分类号】P208;TU198;TP391.41
  • 【下载频次】16
节点文献中: 

本文链接的文献网络图示:

本文的引文网络