节点文献

一种求解一般性多学科优化问题的分布式分解方法(英文)

A Distributed Decomposition Method for General Problems in Multidisciplinary Design Optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张代雨张贝王志东陈旭吕海宁

【Author】 ZHANG Dai-yu;ZHANG Bei;WANG Zhi-dong;CHEN Xu;Lü Hai-ning;School of Naval Architecture and Engineering, Jiangsu University of Science and Technology;State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University;Yazhou Bay Institute of Deepsea SCI-TECH, Shanghai Jiao Tong University;China Ship Scientific Research Center;

【通讯作者】 张贝;

【机构】 江苏科技大学船舶工程学院上海交通大学海洋工程国家重点实验室上海交通大学三亚崖州湾深海科技研究院中国船舶科学研究中心

【摘要】 为了求解大规模多学科优化设计问题,目前已有多种分布式多学科优化方法被提出,但这些优化方法数值收敛困难,或局限于拟可分多学科设计优化问题,不适用于具有全局约束和全局目标的一般性多学科优化问题。为此本文提出一种分布式分解优化方法,其主要思想是通过两层分解策略,将一般性多学科优化问题分解为一个系统级问题和多个并行子优化问题,并证明该方法的最优解收敛于一般性多学科优化问题的Karush-Kuhn-Tucker点。最后,通过两个典型多学科优化算例对所提方法进行测试验证。结果表明该方法是一种具有良好收敛性能、竞争力强的分布式多学科优化方法。

【Abstract】 Many distributed multidisciplinary design optimization(MDO) methods have been presented for the optimal design of large-scale multidisciplinary systems, some of them are known to have numerical convergence difficulties while some of them are restricted to the quasi-separable MDO problem. For solving the general MDO problem with global constraint and objective, a distributed decomposition method is presented to decompose the general MDO problem into one system-level problem and multiple concurrent sub optimization problems through a two-level decomposition process, whose solution is proven to converge to the Karush-Kuhn-Tucker point of the general MDO problem. Two typical cases are introduced to investigate the performance of the presented method.The results show that the presented method is a competitive distributed MDO method with a good convergence performance.

【基金】 Supported by the National Natural Science Foundation of China (51909110);the Natural Science Foundation of Jiangsu Higher Education Institutions of China (19KJB570001)~~
  • 【文献出处】 船舶力学 ,Journal of Ship Mechanics , 编辑部邮箱 ,2023年06期
  • 【分类号】U662
  • 【下载频次】24
节点文献中: 

本文链接的文献网络图示:

本文的引文网络