节点文献

多通道CNN-BiLSTM的短时温度预测

The Short-Time Temperature Prediction for Multi-Channel CNN-BiLSTM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李昌响赵嘉韩龙哲樊棠怀李桢桢

【Author】 LI Changxiang;ZHAO Jia;HAN Longzhe;FAN Tanghuai;LI Zhenzhen;School of Information Engineering, Nanchang Institute of Technology;

【通讯作者】 赵嘉;

【机构】 南昌工程学院信息工程学院

【摘要】 温度数据具有明显的反向、时序相关性及多尺度特征,提升温度预测精度的关键在于能否有效提取温度数据的上述特征.为提取这些特征,该文提出一种多通道卷积双向长短期记忆网络(convolutional neural network-bidirection long short-term memory, CNN-BiLSTM)的短时温度预测模型.该模型首先利用双向长短期记忆网络(BiLSTM)提取数据的反向特征、时序相关性特征;再利用多通道且不同尺寸、不同膨胀率的卷积神经网络(CNN)提取数据的多尺度特征,组成在学习多尺度特征后的数据,将其和原始数据作为BiLSTM层的多通道输入,输出的数据经过全连接层,形成最终的预测结果.实验结果表明:多通道CNN-BiLSTM的短时温度预测模型能有效地提取数据的时序相关性、反向及多尺度特征,可有效地提升温度预测精度,是一种行之有效的短时温度预测模型.

【Abstract】 Temperature data have obvious reverse, temporal correlation and multi-scale features.The key to improve the accuracy of temperature prediction is to extract the above features from temperature data effectively.In order to extract these features, a short-time temperature prediction model is propsed for Convolutional Neural Network-Bidirection Long Short-Term Memory(CNN-BiLSTM).BiLSTM is used to extract reverse feature and temporal correlation feature from data.Multi-channel CNN with different sizes and expansion rates is used to extract multi-scale feature from the data and composed the data after learning multi-scale feature.The data and the original data are used as multi-channel input of BiLSTM layer, and the output data passes through the full connection layer to form the final prediction result.The experimental results show that the short-time temperature prediction model for multi-channel CNN-BiLSTM can effectively extract the reverse, temporal correlation and multi-scale features of the data, and can effectively improve the accuracy of temperature prediction.Therefore, it is an effective short-time temperature prediction model.

【基金】 国家自然科学基金(62069014,61962036);江西省重点研发计划课题(20192BBE50076,20203BBGL73225)资助项目
  • 【文献出处】 江西师范大学学报(自然科学版) ,Journal of Jiangxi Normal University(Natural Science Edition) , 编辑部邮箱 ,2023年03期
  • 【分类号】TP183
  • 【下载频次】20
节点文献中: 

本文链接的文献网络图示:

本文的引文网络