节点文献

基于轻量化卷积神经网络的人体动作识别

Human activity recognition based on lightweight convolutional neural network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汪超刘思远郑慧卓智海

【Author】 WANG Chao;LIU Siyuan;ZHENG Hui;ZHUO Zhihai;School of Information and Communication Engineering, Beijing Information Science & Technology University;School of Computer Science & Technology, Beijing Institute of Technology;

【通讯作者】 卓智海;

【机构】 北京信息科技大学信息与通信工程学院北京理工大学计算机学院

【摘要】 针对传统卷积神经网络模型LeNet识别准确率低,占用内存大等问题,提出了一种基于轻量化卷积神经网络的人体动作识别模型(human activity recognition net, HARNet)。首先,利用MobileNetV2模型参数量和计算量小的特点,利用迁移学习方法,将预训练好的权重参数迁移到MobileNetV2模型中,最后添加全连接层构建了HARNet,实现了对日常行为动作的准确识别和分类。实验结果表明,该模型动作识别平均准确率可达89%,相比于传统卷积神经网络LeNet,准确率更高,且训练好的模型内存大小仅8.97 MB,验证了该模型的有效性。

【Abstract】 For the problems of low recognition accuracy and large memory consumption of the traditional convolutional neural network model LeNet, a human activity recognition net(HARNet) based on lightweight convolutional neural network was proposed.Firstly, the features of the MobileNetV2 model with a small number of parameters and calculations were used; then the transfer learning method was applied to transfer the pre-trained weight parameters to the MobileNetV2 model.Finally, a fully connected layer was added to build a HARNet, which achieved more accurate recognition and classification of daily behavioral actions.The experimental results show that the average accuracy of activity recognition of the model can reach 89%,which is higher than the traditional convolutional neural network LeNet, and the memory size of the trained model is only 8.97 MB,which verifies the effectiveness of the model.

  • 【文献出处】 北京信息科技大学学报(自然科学版) ,Journal of Beijing Information Science & Technology University , 编辑部邮箱 ,2023年03期
  • 【分类号】TP391.41;TP183
  • 【下载频次】41
节点文献中: 

本文链接的文献网络图示:

本文的引文网络