节点文献

基于ACO-SVM的火炮供输弹系统机械故障诊断

Mechanical Fault Diagnosis of Ammunition Ramming System Based on ACO-SVM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李孟克许昕潘宏侠张航高俊峰刘燕军

【Author】 LI Mengke;XU Xin;PAN Hongxia;ZHANG Hang;GAO Junfeng;LIU Yanjun;School of Mechanical Engineering ,North University of China;System Identification and Diagnosis Technology Research Institute,North University of China;CRRC Yongji Electric Co.,Ltd.;Inner Mongolia First Machinery Group;Inner Mongolia North Heavy Industry Group;

【机构】 中北大学机械工程学院中北大学系统辨识与诊断技术研究所中车永济电机有限公司内蒙古一机集团内蒙古北方重工集团

【摘要】 针对火炮供输弹系统故障信号所提取出的特征参量冗余复杂而导致故障类型不易识别的问题,设计一种基于蚁群优化支持向量机(ACO-SVM)的机械故障诊断方法。对信号进行特征提取得到信息熵,再采用ACO-SVM算法对其进行优化约简和故障诊断,并与支持向量机算法进行对比。结果表明:ACO-SVM算法具有更高的准确率,且准确率高达95%。

【Abstract】 A mechanical fault diagnosis method based on ACO-SVM is proposed to solve the difficulty in fault type identification caused by the complex redundancy of the characteristic parameters extracted from the fault signal of the ammunition ramming system. Signal feature extraction was conducted to obtain information entropy. ACO-SVM algorithm was used for optimization reduction and fault diagnosis, and compared with support vector machine algorithm. The results show that ACO-SVM algorithm has better accuracy with accuracy rate up to 95%.

【基金】 国家自然科学基金资助项目(51675491);国家自然科学基金面上项目(201801D121185)
  • 【文献出处】 机械制造与自动化 ,Machine Building & Automation , 编辑部邮箱 ,2022年02期
  • 【分类号】E924
  • 【下载频次】168
节点文献中: 

本文链接的文献网络图示:

本文的引文网络