节点文献

基于在线评论数据挖掘和Kano模型的产品需求分析

Product Demand Analysis Based on Online Review Data Mining and Kano Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张振刚罗泰晔

【Author】 Zhang Zhengang;Luo Taiye;School of Business Administration, South China University of Technology;Guangzhou Digital Innovation Research Center;School of Management, Zhongkai University of Agriculture and Engineering;

【通讯作者】 罗泰晔;

【机构】 华南理工大学工商管理学院广州数字创新研究中心仲恺农业工程学院管理学院

【摘要】 本文在Kano模型的基础上,提出一种基于在线评论数据挖掘来识别产品需求类型的方法。从在线评论中提取产品属性并进行情感分析,在此基础上构建识别不同属性需求的分类模型。本文以4款5G手机的在线评论数据为素材进行实例分析,将消费者对5G手机产品属性的需求划分为期望需求、必备需求、魅力需求和无差异需求四类,并以满意度和关注度为指标对5G手机产品属性的重要程度和需改进程度进行了排序。

【Abstract】 Based on Kano model and online review data mining, this paper proposes a method to identify product demand types. Product attributes are extracted from online reviews and sentiment analysis is carried out. Then a classification model for identifying different attribute demands is proposed. Taking the online review data of four 5 G mobile phones as an example, this paper analyzes consumers’ attribute demands of 5 G mobile phone products, which are divided into four types: one-dimension demand, must-be demand, attractive demand and indifferent demand. The importance degree and the to-be-improved degree of the attributes of 5 G mobile phones are ranked by satisfaction degree and attention degree.

【基金】 国家社会科学基金重大项目(18ZDA062)
  • 【分类号】TP391.1;F426.63
  • 【下载频次】344
节点文献中: 

本文链接的文献网络图示:

本文的引文网络