节点文献
First principles study on geometric and electronic properties of two-dimensional Nb2CΕx MXenes
【摘要】 MXenes are a new type of two-dimensional carbides with rich physical and chemical properties. The physics of MXenes, and thus the applications, are dominated by surface functional groups. Herein, the effects of different terminations(O,S, Se, Te) on the geometric and electronic properties of Nb2C MXenes were studied via density functional theory(DFT)calculations. Three adsorption sites were examined to determine the most stable configurations. The results showed that both the types and the positions of surface functional groups influence the geometric stability and physical characters of Nb2C. The S and Se terminations make the Nb2C MXenes to be semiconductor, while Nb2C MXenes with other terminations(O, Te) are conductor. The electron location function, density of states, Bader charge distribution, and the projected crystal orbital Hamilton population were conducted to explain the origin of adsorption stability and electronic nature difference. Our results provide a fundamental understanding about the effects of surface terminations on the intrinsic stability and electronic properties of Nb2C MXenes.
【Abstract】 MXenes are a new type of two-dimensional carbides with rich physical and chemical properties. The physics of MXenes, and thus the applications, are dominated by surface functional groups. Herein, the effects of different terminations(O,S, Se, Te) on the geometric and electronic properties of Nb2C MXenes were studied via density functional theory(DFT)calculations. Three adsorption sites were examined to determine the most stable configurations. The results showed that both the types and the positions of surface functional groups influence the geometric stability and physical characters of Nb2C. The S and Se terminations make the Nb2C MXenes to be semiconductor, while Nb2C MXenes with other terminations(O, Te) are conductor. The electron location function, density of states, Bader charge distribution, and the projected crystal orbital Hamilton population were conducted to explain the origin of adsorption stability and electronic nature difference. Our results provide a fundamental understanding about the effects of surface terminations on the intrinsic stability and electronic properties of Nb2C MXenes.
【Key words】 Nb2C MXenes; surface functional groups; geometric structure; electronic properties;
- 【文献出处】 Chinese Physics B ,中国物理B , 编辑部邮箱 ,2022年03期
- 【分类号】O469
- 【下载频次】52