节点文献
有限格中的秩生成函数和Poincaré多项式
Rank-generating Functions and Poincaré Polynomials in the Finite Lattices
【摘要】 在一些有限格Bn,Dn,■中,利用组合系数的方法分别给出了它们的秩生成函数和Dn的特征多项式.在有限典型群子空间轨道生成的格中,利用典型群理论和计算法给出在GLn(Fqn),Sp2v(Fqn),Un(Fq2n)作用下子空间轨道生成格的秩生成函数和特征多项式,并且给出这些格的Poincaré多项式的定义,确定了它们的表示式.
【Abstract】 In the finite lattices Bn, Dn and ■ using the method of combinatorial coefficients their rank-generating functions and characteristic polynomial of Dn are gievn.In some lattices generated by the orbits of the subspaces under the action of finite classical groups the cases of GLn(Fqn),Sp2v(Fqn),Un(Fq2n) using the theory and algorithm of finite classical groups their rank-generating functions and the characteristic polynomials are introduced,the Poincaré polynomial has been defined,and their expressions are also determined.
【关键词】 格;
秩生成函数;
典型群;
特征多项式;
Poincaré多项式;
【Key words】 lattices; classical groups; characteristic polynomial; rank-generating functions; Poincaré polynomia;
【Key words】 lattices; classical groups; characteristic polynomial; rank-generating functions; Poincaré polynomia;
【基金】 国家自然科学基金(11971146)资助项目
- 【文献出处】 应用数学学报 ,Acta Mathematicae Applicatae Sinica , 编辑部邮箱 ,2022年06期
- 【分类号】O174.14
- 【下载频次】3