节点文献

基于主动小样本学习的管道焊缝缺陷检测方法

Active small sample learning based the pipe weld defect detection method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘金海赵真付明芮左逢源王雷

【Author】 Liu Jinhai;Zhao Zhen;Fu Mingrui;Zuo Fengyuan;Wang Lei;School of Information Science and Engineering, Northeastern University;Shenyang Paidelin Technology Company;

【通讯作者】 刘金海;

【机构】 东北大学信息科学与工程学院沈阳派得林科技有限责任公司

【摘要】 基于X射线探伤的焊缝缺陷检测是维护管道安全的关键环节,实现高精度、高效率的缺陷智能检测是推动无损检测智能化、现代化的重要方面。目前,基于深度学习的缺陷检测方法很难达到较高的精度和效率,因其需要大量标注样本且难以获取。针对这一问题,提出了一种基于主动小样本学习的管道焊缝缺陷检测方法。首先,基于轻量级神经网络提取小样本特征,以数据驱动的方式训练缺陷检测器;然后,推理无标签样本计算检测及分类不确定度并充分挖掘价值样本;最后,根据高价值样本微调网络参数,以最小的成本获得较高的性能提升。实验结果表明,方法能够利用更少的样本,在保证运行效率的前提下,提高约8%的精度。

【Abstract】 The detection of weld defects based on the X-ray flaw detection is a key part of maintaining pipeline safety. The realization of high-precision and high-efficiency intelligent defect detection is an important aspect to promote the intelligence and modernization of nondestructive testing. At present, it is difficult to achieve high accuracy and efficiency with deep learning-based defect detection methods because they require a large number of labeled samples and are difficult to obtain. To address this problem, this article proposes an active small sample learning-based defect detection method for pipe welds. First, the defect detector is trained in a data-driven manner by extracting small sample features based on a lightweight neural network. Then, the inference of the unlabeled samples is used to calculate the detection and classification uncertainty, which could fully exploit the value samples. Finally, the network parameters are fine-tuned according to the high-value samples to obtain a high performance improvement with minimal cost. Experimental results show that the proposed method can improve the accuracy by about 8% with fewer samples and the guaranteed operational efficiency.

【基金】 国家自然科学基金(U21A20481,61973071);辽宁省兴辽英才项目(XLYC2002046)资助
  • 【文献出处】 仪器仪表学报 ,Chinese Journal of Scientific Instrument , 编辑部邮箱 ,2022年11期
  • 【分类号】O434.19;TE65;TQ055.81
  • 【下载频次】51
节点文献中: 

本文链接的文献网络图示:

本文的引文网络