节点文献

风扰和故障条件下集群无人机强化学习自适应容错协同控制

Reinforcement learning-based adaptive fault-tolerant cooperative control of swarm UAVs against wind effects and faults

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 余自权程月华张友民姜斌

【Author】 YU Ziquan;CHENG Yuehua;ZHANG Youmin;JIANG Bin;College of Automation Engineering, Nanjing University of Aeronautics and Astronautics;Department of Mechanical, Industrial and Aerospace Engineering, Concordia University;

【通讯作者】 张友民;姜斌;

【机构】 南京航空航天大学自动化学院加拿大康考迪亚大学机械工业与航空工程系

【摘要】 针对集群无人机编队协同运动过程中遭遇风扰与执行器故障的问题,提出了一种基于强化学习的自适应容错协同控制算法.首先,考虑无人机编队过程中风扰与故障的影响,建立面向控制的模型;其次,基于个体无人机跟踪偏差,构建可同时调节跟踪性能与同步性能的分布式同步跟踪偏差;然后,设计强化学习中的Actor-Critic神经网络,引入分数阶微积分算子,提出强化学习分数阶自适应容错协同控制器.最后,通过Lyapunov稳定性分析与仿真验证,检验所设计控制器的可行性和有效性.

【Abstract】 In this paper, we investigate the fault-tolerant control problem for swarm unmanned aerial vehicles(UAVs) against wind effects and actuator faults.Also, a reinforcement learning-based fault-tolerant cooperative control strategy is developed to achieve the safety of swarm flight.First, a control-oriented model is established by considering wind effects and actuator faults.Second, based on the individual tracking error of each UAV,the synchronization tracking error is constructed for each UAV by involving individual tracking and synchronization performances.Third, by designing actor and critic neural networks, and using fractional-order calculus, a reinforcement learning-based fractional-order adaptive fault-tolerant cooperative controller is developed for each UAV.Finally, it is shown by Lyapunov stability analyses and simulation results that the developed control scheme can effectively attenuate adverse effects caused by the wind and faults, and that synchronization tracking errors are uniformly ultimately bounded.

【基金】 国家自然科学基金(62003162,61833013,62020106003);江苏省自然科学基金(BK20200416);空间智能控制技术实验室开放基金(HTKJ2022KL502015);航空科学基金(20200007018001);高等学校学科创新引智计划(B20007);加拿大自然科学基金项目
  • 【文献出处】 厦门大学学报(自然科学版) ,Journal of Xiamen University(Natural Science) , 编辑部邮箱 ,2022年06期
  • 【分类号】TP273;V279;V249.1
  • 【下载频次】57
节点文献中: 

本文链接的文献网络图示:

本文的引文网络