节点文献

基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法

Ultra Short-term Wind Power Prediction Method Based on IPSO-BiLSTM-AM Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 高鹭孔繁苗张飞任晓颖张晓琳秦岭

【Author】 GAO Lu;KONG Fanmiao;ZHANG Fei;REN Xiaoying;ZHANG Xiaolin;QIN Ling;Institute of Information Engineering,Inner Mongolia University of Science and Technology;Renewable Energy College,North China Electric Power University;

【通讯作者】 孔繁苗;

【机构】 内蒙古科技大学信息工程学院华北电力大学可再生能源学院

【摘要】 针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电场的历史数据进行提前0~15 min试验。结果表明,提出的IPSO-BiLSTM-AM模型具有较高的预测精度,可以为风电场电力调度与控制提供科学参考。

【Abstract】 In view of the low accuracy and stability of existing models,a wind power prediction model based on BiLSTM is proposed.BiLSTM can handle the non-linear relationship among wind power multi-variables well. Secondly,the improved PSO algorithm is used to optimize the hyper parameters of BiLSTM,and the AM is used for training the weight of the model. Finally,a 0~15 minute advance test is carried out with the historical data of a wind farm in Inner Mongolia Autonomous Region. The results show that the proposed IPSO-BiLSTM-AM model has high prediction accuracy,which can provide scientific reference for the power dispatch and control of wind farms.

【基金】 国家自然科学基金资助项目(62161041);内蒙古自治区科技计划项目(2021GG0046)~~
  • 【分类号】TP18;TM614
  • 【被引频次】1
  • 【下载频次】325
节点文献中: 

本文链接的文献网络图示:

本文的引文网络