节点文献
基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法
Ultra Short-term Wind Power Prediction Method Based on IPSO-BiLSTM-AM Model
【摘要】 针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电场的历史数据进行提前0~15 min试验。结果表明,提出的IPSO-BiLSTM-AM模型具有较高的预测精度,可以为风电场电力调度与控制提供科学参考。
【Abstract】 In view of the low accuracy and stability of existing models,a wind power prediction model based on BiLSTM is proposed.BiLSTM can handle the non-linear relationship among wind power multi-variables well. Secondly,the improved PSO algorithm is used to optimize the hyper parameters of BiLSTM,and the AM is used for training the weight of the model. Finally,a 0~15 minute advance test is carried out with the historical data of a wind farm in Inner Mongolia Autonomous Region. The results show that the proposed IPSO-BiLSTM-AM model has high prediction accuracy,which can provide scientific reference for the power dispatch and control of wind farms.
【Key words】 wind power prediction; improved particle swarm optimization; bidirectional long short-term memory neural network; attention mechanism;
- 【文献出处】 智慧电力 ,Smart Power , 编辑部邮箱 ,2022年04期
- 【分类号】TP18;TM614
- 【被引频次】1
- 【下载频次】325