节点文献

桥梁结构健康监测基于相关性分析的多源数据预测算法研究

Research on Multi-source Data Prediction Algorithm Based on Correlation Analysis for Bridge Structural Health Monitoring

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 薛国华李明慧韩宇轩杨柳刘恒

【Author】 XUE Guohua;LI Minghui;HAN Yuxuan;YANG Liu;LIU Heng;China Energy Group International Engineeering Consulting Co.Ltd.;School of Information Science and Technology,Southwest Jiaotong University;National Engineering Laboratory for Integrated Transportation Big Data Application Technology;The 10th Research Institute of China Electronics Technology Group Corporation;

【机构】 国家能源集团国际工程咨询有限公司西南交通大学信息科学与技术学院综合交通大数据应用技术国家工程实验室中国电子科技集团第十研究所

【摘要】 通过大数据预处理和分析技术,对位移、应变、风速、温度、湿度和索力等桥梁监测数据进行分析。首先使用傅里叶变换和小波变换,分析了不同监测数据类型之间的相关性,之后通过Bi-LSTM多源预测模型验证了相关性分析的结论。结果表明:位移信号与温度信号之间具有负相关性、位移信号与湿度信号具有正相关性,引入相关性强的桥梁监测数据建立多源预测模型能有效提高预测精度。研究结果对桥梁结构健康监测数据的关联分析与挖掘有参考价值,可为桥梁的日常养护、监测运营和应急管理提供决策依据。

【Abstract】 Through big data preprocessing and analysis technology,the displacement,strain,wind speed,temperature,humidity and cable stress of bridge monitoring data were analyzed.Firstly,Fourier transform and wavelet transform were used to analyze the correlation between different monitoring data types,and then BI-LSTM multi-source prediction model was used to verify the correctness of the conclusion of correlation analysis.The results show that there is a negative correlation between the displacement signal and the temperature signal,and a positive correlation between the displacement signal and the humidity signal.Introducing the bridge monitoring data with strong correlation to establish the multi-source prediction model can effectively improve the prediction accuracy.The research results of this paper have reference value for the correlation analysis and mining of bridge structural health monitoring data,and provide decision-making basis for the daily maintenance,monitoring operation and emergency management of bridges.

【基金】 中国国家铁路集团有限公司科技研究开发计划(P2020X001);四川省科技计划(2022YFG0152)
  • 【文献出处】 铁道建筑 ,Railway Engineering , 编辑部邮箱 ,2022年11期
  • 【分类号】U446
  • 【下载频次】85
节点文献中: 

本文链接的文献网络图示:

本文的引文网络