节点文献

基于深度学习的宫颈癌放疗靶区及危及器官自动勾画研究

Automatic contouring of clinical target volume and organs at risk in radiotherapy for cervical cancer based on deep learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 全科润柏朋刚陈文娟程品晶陈彦宇吴荣容夏小艺周益民陈济鸿

【Author】 QUAN Kerun;BAI Penggang;CHEN Wenjuan;CHENG Pinjing;CHEN Yanyu;WU Rongrong;XIA Xiaoyi;ZHOU Yimin;CHEN Jihong;School of Nuclear Science and Technology,University of South China;Department of Radiation Oncology,Xiangtan Central Hospital;Department of Radiation Oncology,Fujian Cancer Hospital;

【通讯作者】 程品晶;

【机构】 南华大学核科学技术学院湘潭市中心医院放疗科福建省肿瘤医院放疗科

【摘要】 目的:构建基于深度学习(deep learning, DL)的卷积神经网络模型,实现宫颈癌患者放射治疗计划的临床靶区体积(clinical target volume, CTV)和危及器官(organ at risks, OARs)自动勾画。方法:回顾性分析在福建省肿瘤医院行放射治疗的宫颈癌患者99例。对患者CT图像进行预处理,作为模型输入。设计一种基于DL的自动勾画模型,使用组合损失函数训练该模型。以医师手动勾画为度量标准,计算DL自动勾画模型下CTV靶区和膀胱、直肠、乙状结肠、左右骨髓、左右股骨头的准确率,并与基于图谱的自动勾画方法(atlas-based auto segmentation, ABAS)相比较。结果:DL模型在CTV靶区和7种危及器官(膀胱、直肠、乙状结肠、左右骨髓、左右股骨头)的戴斯系数分别为(0.85±0.02、0.94±0.04、0.87±0.03、0.67±0.14、0.85±0.03、0.87±0.03、0.87±0.06和0.87±0.06),95%豪斯多夫距离(mm)分别为(3.22±0.56、1.37±0.37、1.41±0.34、27.39±35.63、1.40±0.17、1.36±0.22、6.78±7.89和6.45±7.44),平均表面距离(mm)分别为(0.25±0.05、0.12±0.06、0.19±0.05、2.29±2.71、0.16±0.04、0.15±0.03、0.36±0.33和0.38±0.37)。DL勾画模型的戴斯系数均高于ABAS勾画模型。除乙状结肠外,DL勾画模型的95%豪斯多夫距离和平均表面距离均小于ABAS勾画模型。结论:提出的DL模型能较好地实现宫颈癌放疗临床靶区和危及器官的自动勾画,可为临床医师勾画提供初步参考,节省临床靶区和危及器官勾画的时间。

【Abstract】 Objective:A convolutional neural network model based on deep learning(DL) was constructed to realize the automatic contouring of clinical target volume(CTV) and organs at risk(OARs) of radiotherapy plan for cervical cancer patients.Methods:An analysis of 99 patients with cervical cancer who underwent radiotherapy in Fujian Cancer Hospital was conducted retrospectively.An automatic contouring model based on DL was designed and trained by combinatorial loss function.The accuracy of CTV target, bladder, rectum, sigmoid colon, left and right marrow, and left and right femoral head under the DL automatic contour model was calculated and compared with the accuracy of atlas-based auto segmentation(ABAS) method.Results:The Dice coefficient of DL model in CTV and senven OARs(bladder, rectum, sigmoid colon, left and right marrow, left and right femoral head) were(0.85±0.02,0.94±0.04,0.87±0.03,0.67±0.14,0.85±0.03,0.87±0.03,0.87±0.06 and 0.87±0.06) respectively, 95 pesrcent Hausdorf distances(mm) were(3.22 ±0.56,1.37±0.37,1.41±0.34,27.39±35.63,1.40±0.17,1.36±0.22,6.78±7.89 and 6.45±7.44) respectively and the mean surface distances(mm) were(0.25±0.05,0.12±0.06,0.19±0.05,2.29±2.71,0.16±0.04,0.15±0.03,0.36±0.33 and 0.38±0.37) respectively.The Dice coefficient of DL automatic contour model was higher than of ABAS.Except for sigmoid colon, 95 percent Hausdorf distance and Mean surface distance of DL automatic contour model were smaller than of ABAS.Conclusion:The proposed DL model can realize the automatic contouring of CTV and OARs in radiotherapy for cervical cancer, which can provide preliminary reference for clinicians and save the time of delineation os CTV ans OARs.

【基金】 福建省科技厅引导性项目(编号:2022Y0056);福建省科技计划项目(编号:2020J011122,2021Y0052);福建省卫生健康科技项目(编号:2018-ZQN-19);湖南省高校创新平台开放基金项目(编号:20K110)
  • 【文献出处】 现代肿瘤医学 ,Journal of Modern Oncology , 编辑部邮箱 ,2022年20期
  • 【分类号】R737.33
  • 【下载频次】148
节点文献中: 

本文链接的文献网络图示:

本文的引文网络