节点文献

一种维持Saint-Venant方程组移动稳态解的中心格式

Moving-Water Equilibria Preserving Central Scheme for the Saint-Venant System

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 罗一鸣李订芳刘敏董建

【Author】 Luo Yiming;Li Dingfang;Liu Min;Dong Jian;School of Mathematics and Statistics,Wuhan University;College of Liberal Arts and Sciences,National University of Defense Technology;

【通讯作者】 董建;

【机构】 武汉大学数学与统计学院国防科技大学文理学院

【摘要】 针对S aint-Venant方程组提出了一种具有二阶精度的非交错中心有限体积格式.相较于经典中心格式为维持静稳态解选择重构守恒变量和水位值,但在求解移动稳态问题时会产生巨大误差,格式通过重构守恒变量和能量值,以及一种新的源项离散方法能够精确维持移动稳态解并捕捉其小扰动.最后,通过一些经典数值算例验证了格式的收敛性,谐性以及稳健性.

【Abstract】 In this paper,we propose a second-order unstaggered central finite volume scheme for the Saint-Venant system.Classical central scheme can preserve still-water steady state solution by reconstructing conservative variables and the water level,but generates enormous numerical oscillation when considering moving-water steady state.We choose to reconstruct conservative variables and the energy,and design a new discretization of the source term to preserve moving-water equilibria and capture its small perturbations.In the end,several classical numerical experiments are performed to verify the proposed scheme which is convergent,well-balanced and robust.

【基金】 国家重点研发计划项目(2017YFC0405901)~~
  • 【文献出处】 数学物理学报 ,Acta Mathematica Scientia , 编辑部邮箱 ,2022年03期
  • 【分类号】O241.82
  • 【下载频次】21
节点文献中: 

本文链接的文献网络图示:

本文的引文网络