节点文献
基于端帽阱的镱离子光钟的系统设计及研究进展
System design and research progress of the ytterbium ion optical clock based on end-cap trap
【摘要】 随着飞秒光梳和超稳激光技术的发展,无论是基于晶格原子还是离子的光钟,因其不确定度指标已超越复现国际单位制秒定义的铯原子喷泉钟,而成为下一代秒定义最具影响力的候选方案。相较于探测原子数目较大而在稳定度占优势的光晶格钟,离子光钟受到的环境扰动更小因而准确度更高。镱离子光钟拥有两条成为次级秒定义的钟跃迁谱线,且囚禁时间长达数月,其八极跃迁谱线自然线宽在nHz量级。另外,镱离子的冷却、重泵、探测等激光均可通过半导体激光器直接获得,镱离子光钟系统具有更好的应用前景。本文着重介绍中国计量科学研究院搭建的镱离子光钟的物理和光学系统,采用端帽阱囚禁单离子,各频率激光通过光频梳实现锁定。
【Abstract】 With the development of femtosecond optical comb and ultra-stable laser technology, optical clocks based on either lattice atoms or trapped ions, with uncertainty surpassing the current SI second definition realization cesium fountain clock, are the most promising candidates for the SI second re-definition.Lattice optical clocks have good stability based on the large signal-to-noise ratio, while trapped ion optical clocks have lower system uncertainty profit from better isolation and fewer ambient distributions.Two clock transitions of the 171-ytterbium ion have been accepted as secondary definition of SI second.In particular, the octupole transition has a very narrow linewidth on the order of nHz.And single ytterbium ion is available to be trapped for several months.In addition, lasers for ytterbium ion cooling, pumping, and detection can be obtained directly by semiconductor lasers.Therefore, the ytterbium ion optical clock system has a bright application prospect.This paper presents the optical and physical system designs of the 171-ytterbium ion optical clock established by NIM(National Institute of Metrology).The end-cap trap is used to trap a single ion, and all laser frequencies are stabilized by a fiber optical frequency comb.
- 【文献出处】 时间频率学报 ,Journal of Time and Frequency , 编辑部邮箱 ,2022年02期
- 【分类号】TH714.14
- 【下载频次】30