节点文献

基于振动信号的采煤机煤岩截割状态识别

Coal cutting state recognition of shearer based on vibration signal

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李福涛王忠宾司垒谭超梁斌

【Author】 LI Fu-tao;WANG Zhong-bin;SI Lei;TAN Chao;LIANG Bin;School of Mechatronic Engineering, China University of Mining and Technology;Xuhai College, China University of Mining and Technology;

【机构】 中国矿业大学机电工程学院中国矿业大学徐海学院

【摘要】 为了准确识别采煤机截割状态,提出了一种基于小波包分解和学习向量量化(LVQ)神经网络的模式识别方法。将振动信号进行小波包分解,实现振动信号的预处理,得到若干个子频带。在此基础上,计算各个频带的方差,并将其作为特征向量。然后将计算得到的频带方差作为特征向量,输入到LVQ神经网络进行采煤机煤岩截割状态识别。通过实验验证了该方法的有效性,实验结果表明:该方法能够实现采煤机典型煤岩截割状态的识别,平均识别准确率较高,对实现综采工作面的"无人化"具有重要意义。

【Abstract】 In order to accurately recognize the cutting state of shearer, a state recognition method based on wavelet packet decomposition and learning vector quantization(LVQ) neural network is proposed. The vibration signal is decomposed by wavelet packet to pre-process the vibration signal and obtain several sub-bands. On this basis, the variance of each frequency band is calculated and used as the eigenvector. Then, the calculated frequency band variance is taken as the eigenvector and input to LVQ neural network to recognize the coal cutting state of shearer. The experimental results show that the method can realize the recognition of typical coal rock cutting state of shearer, and the average recognition accuracy is high, which is of great significance to realize the unmanned fully mechanized working face.

【基金】 江苏省高等学校自然科学研究面上项目(19KJB510014)
  • 【分类号】TD421.6
  • 【被引频次】1
  • 【下载频次】235
节点文献中: 

本文链接的文献网络图示:

本文的引文网络