节点文献
基于深度强化学习的恶意软件混淆对抗样本生成
OBFUSCATED CODE ADVERSARIAL SAMPLE GENERATION METHOD BASED ON DEEP REINFORCEMENT LEARNING
【摘要】 设计一种PE格式恶意软件混淆对抗样本生成模型。利用深度强化学习算法,实现对恶意软件的自动混淆。通过加入历史帧和LSTM神经网络结构的方法使深度强化学习模型具有记忆性。对比实验表明,该恶意软件变种在基于机器学习的检测模型上的逃逸率高于现有研究,在由918个PE格式恶意软件组成的测试集上达到39.54%的逃逸率。
【Abstract】 This paper designs a PE malware obfuscation adversarial sample generation model. It used deep reinforcement learning algorithms to realize automatic obfuscation of malware, and the deep reinforcement learning model was provided with memory through historical frames and LSTM neural network structure. Comparative experiments show that the escape rate of the generated malware variants on the machine learning-based detection model is higher than that of existing research, reaching 39.54% on the test set composed of 918 PE malware.
【关键词】 深度强化学习;
代码混淆;
对抗训练;
恶意软件检测;
【Key words】 Deep reinforcement learning; Code obfuscation; Adversarial training; Malware detection;
【Key words】 Deep reinforcement learning; Code obfuscation; Adversarial training; Malware detection;
【基金】 国家自然科学基金项目(61772371)
- 【文献出处】 计算机应用与软件 ,Computer Applications and Software , 编辑部邮箱 ,2022年02期
- 【分类号】TP18;TP309
- 【被引频次】1
- 【下载频次】396