节点文献
基于改进RetinaFace算法的教室人数统计方法
Crowd Statistical Methods Based on RetinaFace Algorithm in Classroom Scenes
【摘要】 近年来,人数统计问题在教学场景下的应用需求越来越多,针对目前公开的图像数据集无法满足教室场景下的人脸检测需求,论文提出了包含真实教室场景的图像检测数据集StudentDetection,同时提出了以RetinaFace人脸检测网络为基础进行改进的RetinaStudent人头检测网络,解决了因学生头部姿态导致的脸部被遮挡情况下的人脸识别失败问题,并与当下主流算法进行对比测试,在自制数据集上教室人数统计精确度高达99.1%。
【Abstract】 In recent years,there have been more and more applications for people counting problems in teaching scenarios. In view of the fact that currently public image datasets cannot meet the needs of face detection in the classroom scene,this paper establishes StudentDetection dataset for classroom scene image detection and proposes an improved RetinaStudent network based on the RetinaFace network. RetinaStudent migrates the face detection algorithm to the head detection algorithm,which solves the problem of the face being occluded due to the student’s head pose. Camparing RetinaStudent with the current mainstream algorithms,it achieves an accuracy of 99.1% on self-made dataset.
【Key words】 RetinaFace algorithm; face detection; head detection; crowd statistics;
- 【文献出处】 计算机与数字工程 ,Computer & Digital Engineering , 编辑部邮箱 ,2022年09期
- 【分类号】TP391.41;G434
- 【下载频次】73