节点文献
基于共空间模式和均匀流形投影的运动想象脑电信号识别方法
Recognition of Motor Imagery Electroencephalogram Signal Based on Common Spatial Pattern and UMAP
【摘要】 运动想象脑电信号的识别与分类问题一直是脑机领域研究的热点问题。针对此问题,使用区别传统线性降维方法的流形学习方法,将共空间模式算法与均匀流形投影算法相结合,充分利用了脑电信号中的非线性特征,对运动想象脑电信号进行了特征提取和数据降维,并使用KNN分类器进行了分类,对分类效果做出了评价;将降维前后的数据分类结果进行对比,说明了数据降维的优点和必要性;进一步讨论了降维结果在数据可视化方面的表现。发现经过数据降维的特征数据的可视化效果明显优于未经过降维的数据,进一步提出了一种基于共空间模式和均匀流形投影的新型脑电信号识别方法,对进行脑电信号深度剖析。挖掘脑电信号非线性特征提供了参考价值,同时也在数据流形分布以及数据可视化的角度为运动想象脑电信号识别提供了新思路。
【Abstract】 The recognition and classification of motor imaging EEG signals has always been a hot issue in the field of brain-computer research. In response to this problem, uses a manifold learning method that is different from the traditional linear dimensionality reduction method, combine the CSP and UMAP, make full use of the non-linear features in the EEG signal, perform feature extraction and data dimensionality reduction on the motor imagination EEG signal, and use the KNN classifier to classify, and the classification effect is evaluated; The comparison of the data classification results before and after dimensionality reduction illustrates the advantages and necessity of data dimensionality reduction; The performance of dimensionality reduction results in data visualization is further discussed, and it is found that the visualization effect of feature data after data dimensionality reduction is significantly better than that of data without dimensionality reduction. A new EEG signal recognition method based on CSP and UMAP is proposed, which provides reference value for deep analysis of EEG signals and mining of EEG nonlinear characteristics. The angle of data visualization provides new ideas for the recognition of EEG signals in motor imagination.
【Key words】 metrology; EEG signal; motor imagination; manifold learning; UMAP; CSP; data dimensionality reduction;
- 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2022年08期
- 【分类号】R318;TN911.7
- 【下载频次】174