节点文献

GA遗传算法在圆柱度评价中的应用

Application of Genetic Algorithm in Cylindricity Evaluation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄绍服裴袁鑫

【Author】 HUANG Shaofu;PEI Yuanxin;School of Mechanical Engineering, Anhui University of Science and Technology;Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics;Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology;

【机构】 安徽理工大学机械工程学院南京航空航天大学江苏省精密与微细制造技术重点实验室安徽理工大学环境友好材料与职业健康研究院

【摘要】 为提升圆柱度误差的计算精度,使评价结果更加理想,提出在圆柱度误差评价中应用GA遗传算法。实验中使用3组原始采样点数据,以最小区域法为例,由目标函数的寻优变量组成遗传算法的染色体,将最小区域法的目标函数作为遗传算法中的适应度函数,采用实数编码的方式,对获取的3组原始采样点数据进行寻优求解。实验结果表明,相比于3组数据的原求解结果,加入遗传算法后,数据1的精度提高了1.796%,数据2的精度提高了7.691%,数据3的精度提高了34.487%,证明GA遗传算法在圆柱度评价中能够提升圆柱度误差的计算精度,并且能够更精确地在空间中搜索到最优参数。

【Abstract】 In order to improve the calculation accuracy of cylindricity error and obtain more ideal evaluation results, the genetic algorithm was proposed for cylindricity error evaluation.In the experiment, three sets of original sampling point were used. Taking the minimum zone as an example, the chromosome of the genetic algorithm was composed of the optimization variables of the objective function and the objective function of the minimum region method was used as the fitness function in the genetic algorithm. The real number coding method was used to optimize the three sets of original sampling point.the experimental results showed that compared with the original solution results of the three sets of data and after adding the genetic algorithm, the accuracy of data 1 was increased by 1.796%, the accuracy of data 2 was increased by 7.691% and the accuracy of data 3 was increased by 34.487%.It is proved that genetic algorithm is able to improve the calculation accuracy of cylindricity error in cylindricity evaluation and to search the optimal parameters in space more accurately.

【基金】 国家自然科学基金资助项目(52275228);江苏省精密与微细制造技术重点实验室开放基金项目资助;安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2021YF06)
  • 【文献出处】 安徽理工大学学报(自然科学版) ,Journal of Anhui University of Science and Technology(Natural Science) , 编辑部邮箱 ,2022年06期
  • 【分类号】TP18;TG835
  • 【下载频次】33
节点文献中: 

本文链接的文献网络图示:

本文的引文网络