节点文献
基于门控多头注意力机制的视频摘要
Video Summarization Based on Gated Multi-head Attention Mechanism
【摘要】 技术能降低原始视频冗余程度,减小视频存储空间和浏览时间。现有的视频摘要方法大多采用递归结构,不仅计算复杂而且模型很难并行化运行。为了解决这个问题,提出了一种基于门控多头注意力机制的视频摘要网络模型(GMPAVS),该模型包含两种多头自注意模块,能同时捕获时间帧之间的全局和局部依赖关系,同时引入了相对位置编码和绝对位置编码,用于捕获视频的时间相关性。在两个基准数据集SumMe和TVSum上的实验结果证明了该方法的有效性。
【Abstract】 Video summarization technology can reduce the redundancy of original videos as well as video storage space and browsing time. Most of the existing video summarization methods adopt a recursive structure, which is not only computationally complex but also makes it difficult to run the model in parallel. To address this issue, this paper proposes a video summarization network model(GMPAVS) based on a gated multi-head attention mechanism. The model contains two multihead self-attention modules, which can simultaneously capture the global and local dependencies between time frames, and introduce relative position encoding and absolute position encoding to capture the temporal correlation of videos.
【Key words】 video summarization; parallelization; attention mechanism; relative position encoding;
- 【文献出处】 工业控制计算机 ,Industrial Control Computer , 编辑部邮箱 ,2022年12期
- 【分类号】TP391.41
- 【下载频次】7