节点文献

基于门控多头注意力机制的视频摘要

Video Summarization Based on Gated Multi-head Attention Mechanism

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【摘要】 技术能降低原始视频冗余程度,减小视频存储空间和浏览时间。现有的视频摘要方法大多采用递归结构,不仅计算复杂而且模型很难并行化运行。为了解决这个问题,提出了一种基于门控多头注意力机制的视频摘要网络模型(GMPAVS),该模型包含两种多头自注意模块,能同时捕获时间帧之间的全局和局部依赖关系,同时引入了相对位置编码和绝对位置编码,用于捕获视频的时间相关性。在两个基准数据集SumMe和TVSum上的实验结果证明了该方法的有效性。

【Abstract】 Video summarization technology can reduce the redundancy of original videos as well as video storage space and browsing time. Most of the existing video summarization methods adopt a recursive structure, which is not only computationally complex but also makes it difficult to run the model in parallel. To address this issue, this paper proposes a video summarization network model(GMPAVS) based on a gated multi-head attention mechanism. The model contains two multihead self-attention modules, which can simultaneously capture the global and local dependencies between time frames, and introduce relative position encoding and absolute position encoding to capture the temporal correlation of videos.

  • 【文献出处】 工业控制计算机 ,Industrial Control Computer , 编辑部邮箱 ,2022年12期
  • 【分类号】TP391.41
  • 【下载频次】7
节点文献中: 

本文链接的文献网络图示:

本文的引文网络