节点文献

基于深度学习的表情动作单元识别综述

Survey of Expression Action Unit Recognition Based on Deep Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邵志文周勇谭鑫马利庄刘兵姚睿

【Author】 SHAO Zhi-wen;ZHOU Yong;TAN Xin;MA Li-zhuang;LIU Bing;YAO Rui;School of Computer Science and Technology,China University of Mining and Technology;Engineering Research Center of Mine Digitization,Ministry of Education of the People’s Republic of China;Department of Computer Science and Engineering,Shanghai Jiao Tong University;School of Computer Science and Technology,East China Normal University;

【通讯作者】 周勇;

【机构】 中国矿业大学计算机科学与技术学院矿山数字化教育部工程研究中心上海交通大学计算机科学与工程系华东师范大学计算机科学与技术学院

【摘要】 基于深度学习的表情动作单元识别是计算机视觉与情感计算领域的热点课题.每个动作单元描述了一种人脸局部表情动作,其组合可定量地表示任意表情.当前动作单元识别主要面临标签稀缺、特征难捕捉和标签不均衡3个挑战因素.基于此,本文将已有的研究分为基于迁移学习、基于区域学习和基于关联学习的方法,对各类代表性方法进行评述和总结.最后,本文对不同方法进行了比较和分析,并在此基础上探讨了未来动作单元识别的研究方向.

【Abstract】 Expression action unit(AU) recognition based on deep learning is a hot topic in the fields of computer vision and affective computing. Each AU describes a facial local expression action, and the combinations of AUs can quantitatively represent any expression. Current AU recognition mainly faces three challenging factors, scarcity of labels, difficulty of feature capture, and imbalance of labels. On this basis, this paper categorizes the existing researches into transfer learning based, region learning based, and relation learning based methods, and comments and summarizes each category of representative methods. Finally, this paper compares and analyzes different methods, and further discusses the future research directions of AU recognition.

【基金】 国家自然科学基金(No.62106268);江苏省自然科学基金(No.BK20201346);江苏省“六大人才高峰”项目(No.2015-DZXX-010);中央高校基本科研基金(No.2021QN1072)
  • 【文献出处】 电子学报 ,Acta Electronica Sinica , 编辑部邮箱 ,2022年08期
  • 【分类号】TP391.41;TP18
  • 【下载频次】331
节点文献中: 

本文链接的文献网络图示:

本文的引文网络