节点文献

基于自适应多分辨率奇异值分解的大地电磁数据处理

Magnetotelluric data processing based on adaptive multi-resolution singular value decomposition

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李晋马翻红汤井田李勇

【Author】 LI Jin;MA FanHong;TANG JingTian;LI Yong;College of Information Science and Engineering,Hunan Normal University;Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor, Ministry of Education,Central South University;Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources,Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences;

【通讯作者】 汤井田;

【机构】 湖南师范大学信息科学与工程学院中南大学有色金属成矿预测与地质环境监测教育部重点实验室中国地质科学院地球物理地球化学勘查研究所自然资源部地球物理电磁法探测技术重点实验室

【摘要】 针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition, AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.

【Abstract】 In view of the strong electromagnetic interference can easily cover up the weak useful magnetotelluric signal, combined with the advantages of singular value decomposition in denoising, a new magnetotelluric data processing method based on adaptive multi-resolution singular value decomposition(AMRSVD) is proposed. First, the Hankel matrix is constructed for the magnetotelluric data, the approximate signal and detail signal with resolution can be obtained by MRSVD. Then, the signal-noise identification of magnetotelluric data is carried out by using the standard deviation difference between the approximate signal and the detail signal. Then, combined with MRSVD and adjacent standard deviation of detail signal, AMRSVD method is proposed when prior information is unknown. Finally, the AMRSVD method is used to remove the noise for the identified strong interference and reconstruct the useful signal. The experimental results show that this method has high data processing efficiency, and it can effectively remove the noise with strong correlation, the time series and apparent resistivity-phase curves are improved obviously.

【基金】 国家自然科学基金(42074084);国家重点研发计划项目(2018YFC0603202,2018YFE0208300);有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金(2021YSJS15);自然资源部地球物理电磁法探测技术重点实验室开放基金(KLGEPT201905)联合资助
  • 【文献出处】 地球物理学报 ,Chinese Journal of Geophysics , 编辑部邮箱 ,2022年12期
  • 【分类号】P631.325
  • 【下载频次】71
节点文献中: 

本文链接的文献网络图示:

本文的引文网络