节点文献

基于UWB和KF的无人车目标跟踪方法

Target tracking method for unmanned ground vehicle based on UWB and KF

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵宏强邓文斌辛涛吴钪

【Author】 ZHAO Hongqiang;DENG Wenbin;XIN Tao;WU Kang;School of Mechanical and Electrical Engineering, Central South University;Sunward Intelligent Equipment Co Ltd;Unit 32181 of the PLA;

【通讯作者】 赵宏强;

【机构】 中南大学机电工程学院山河智能装备股份有限公司中国人民解放军32181部队

【摘要】 针对无人车研究领域中的目标跟踪问题,提出了一种基于超宽带(UWB)技术和卡尔曼滤波(KF)定位算法的解决方法。以UWB采集的高精度距离信息为感知输入建立观测模型,分析目标运动特性建立系统状态模型;使用所设计的自适应平方根容积卡尔曼滤波(ASRCKF)定位算法,对目标位置进行定位跟踪。实验部分使用最小二乘估计(LSE)、扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、容积卡尔曼滤波(CKF)等定位方法与提出方法进行对比,结果表明:所提出方法能提供更好的定位精度和稳定性,在动态跟踪环境下能达到15 cm的定位精度。

【Abstract】 To solve the target tracking problem in the field of unmanned ground vehicle research, a new solution based on ultra wide band(UWB)technology and Kalman filtering(KF) positioning algorithm is proposed.The observation model is established by using ranging information collected by UWB as sensing input, and the system state model is established by analyzing target motion characteristic.A designed adaptive square root cubature Kalman filtering(ASRCKF) positioning algorithm is used to locate and track the target position.In experiments, the proposed method is compared with least squares estimation(LSE),extended Kalman filtering(EKF) and unscented Kalman filtering(UKF),and cubature Kalman filtering(CKF) positioning methods, result of experiments show that the proposed target tracking method provides better precision and stability than comparison methods, and can reach a positioning precision of 15 cm in dynamic tracking environment.

【基金】 国家重点研发计划资助项目(2019YFC1511503);湖湘青年英才计划项目(2019RS2053)
  • 【文献出处】 传感器与微系统 ,Transducer and Microsystem Technologies , 编辑部邮箱 ,2022年10期
  • 【分类号】U463.6;TP391.41
  • 【下载频次】354
节点文献中: 

本文链接的文献网络图示:

本文的引文网络